Terminal Flow of Cluster-Forming Supramolecular Polymer Networks: Single-Chain Relaxation or Micelle Reorganization?

We correlate the terminal relaxation of supramolecular polymer networks, based on unentangled telechelic poly(isobutylene) linear chains forming micellar end-group clusters, with the microscopic chain dynamics as probed by proton NMR. For a series of samples with increasing molecular weight, we find a quantitative agreement between the terminal relaxation times and their activation energies provided by rheology and NMR. This finding corroborates the validity of the transient-network model and the special case of the sticky Rouse model, and dismisses more dedicated approaches treating the terminal relaxation in terms of micellar rearrangements. Also, we confirm previous results showing reduction of the activation energy of supramolecular dissociation with increasing molecular weight and explain this trend with an increasing elastic penalty, as corroborated by small angle x-ray scattering data.

[1]  R. Colby,et al.  Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers , 2019, Macromolecules.

[2]  W. Binder,et al.  Self-Healing in Supramolecular Polymers. , 2018, Macromolecular rapid communications.

[3]  L. Willner,et al.  Time-Domain NMR Observation of Entangled Polymer Dynamics: Focus on All Tube-Model Regimes, Chain Center, and Matrix Effects , 2018 .

[4]  K. Saalwächter,et al.  Erratum: "Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains" [J. Chem. Phys. 146, 094902 (2017)]. , 2018, The Journal of chemical physics.

[5]  G. Heinrich,et al.  Influence of weak reversible cross-linkers on entangled polymer melt dynamics. , 2017, The Journal of chemical physics.

[6]  Florian Herbst,et al.  What Controls the Structure and the Linear and Nonlinear Rheological Properties of Dense, Dynamic Supramolecular Polymer Networks? , 2017 .

[7]  K. Saalwächter,et al.  Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains , 2017 .

[8]  J. Allgaier,et al.  Molecular View on Supramolecular Chain and Association Dynamics. , 2016, Physical review letters.

[9]  R. Colby,et al.  Viscoelasticity of entangled random polystyrene ionomers , 2016 .

[10]  Zuowei Wang,et al.  Dynamics in Supramolecular Polymer Networks Formed by Associating Telechelic Chains , 2016 .

[11]  Florian Herbst,et al.  Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network , 2016, Scientific Reports.

[12]  Laurence G. D. Hawke,et al.  Dynamics of Entangled Linear Supramolecular Chains with Sticky Side Groups: Influence of Hindered Fluctuations , 2015 .

[13]  Florian Herbst,et al.  Nanostructure and Rheology of Hydrogen-Bonding Telechelic Polymers in the Melt: From Micellar Liquids and Solids to Supramolecular Gels , 2014 .

[14]  R. Colby,et al.  Ionomer dynamics and the sticky Rouse modela) , 2013 .

[15]  S. Seiffert,et al.  Dynamic supramolecular poly(isobutylene)s for self-healing materials , 2012 .

[16]  R. Larson,et al.  Segmental Dynamics in Entangled Linear Polymer Melts , 2012 .

[17]  K. Saalwächter,et al.  Time-Domain NMR Observation of Entangled Polymer Dynamics: Universal Behavior of Flexible Homopolymers and Applicability of the Tube Model , 2011 .

[18]  A. Herrmann,et al.  Dipolar and Bond Vector Correlation Function of Linear Polymers Revealed by Field Cycling 1H NMR: Crossover from Rouse to Entanglement Regime , 2009 .

[19]  K. Saalwächter Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials , 2007 .

[20]  A. Heuer,et al.  Chain dynamics in elastomers as investigated by proton multiple-quantum NMR , 2006 .

[21]  K. Schweizer,et al.  Microscopic theory of rubber elasticity. , 2004, The Journal of chemical physics.

[22]  A. Semenov,et al.  Dynamics of Entangled Associating Polymers with Large Aggregates , 2002 .

[23]  Alexei R. Khokhlov,et al.  Associating polymers: Equilibrium and linear viscoelasticity , 1995 .

[24]  Fumihiko Tanaka,et al.  Viscoelastic properties of physically crosslinked networks. 1. Transient network theory , 1992 .

[25]  L. Leibler,et al.  Dynamics of reversible networks , 1991 .

[26]  A. Tobolsky,et al.  A New Approach to the Theory of Relaxing Polymeric Media , 1946 .