SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease

[1]  P. Scheltens,et al.  Diagnostic impact of CSF biomarkers for Alzheimer's disease in a tertiary memory clinic , 2015, Alzheimer's & Dementia.

[2]  Steven D. Edland,et al.  Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. , 2015, Cell stem cell.

[3]  Yufeng Shen,et al.  Coding mutations in SORL1 and Alzheimer disease , 2015, Annals of neurology.

[4]  David M. Herrington,et al.  Multiple rare alleles at LDLR and APOA5 confer risk for early-onset myocardial infarction , 2014, Nature.

[5]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[6]  Bo Peng,et al.  Variant association tools for quality control and analysis of large-scale sequence and genotyping array data. , 2014, American journal of human genetics.

[7]  D. Holtzman,et al.  Lysosomal Sorting of Amyloid-β by the SORLA Receptor Is Impaired by a Familial Alzheimer’s Disease Mutation , 2014, Science Translational Medicine.

[8]  Nick C Fox,et al.  Validation of next-generation sequencing technologies in genetic diagnosis of dementia , 2014, Neurobiology of Aging.

[9]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[10]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[11]  Kathryn Roeder,et al.  Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls , 2013, PLoS genetics.

[12]  Douglas N. Rutledge,et al.  Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests , 2012, PloS one.

[13]  B Croisile,et al.  High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease , 2012, Molecular Psychiatry.

[14]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[15]  J. Morris,et al.  The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[16]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[17]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[18]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[19]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[20]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[21]  A. Levey,et al.  Loss of LR11/SORLA Enhances Early Pathology in a Mouse Model of Amyloidosis: Evidence for a Proximal Role in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[22]  K. Lunetta,et al.  The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease , 2007, Nature Genetics.

[23]  D. Campion,et al.  APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy , 2006, Nature Genetics.

[24]  B. Hyman,et al.  Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.