Robust cascade control of DC/DC boost converter against input variation and parameter uncertainties

A DC/DC boost converter is a highly nonlinear system and subject to various uncertainties, such as load change, input voltage variation, and parametric uncertainties. In order to achieve a robust performance for the converter's current and voltage output responses against the uncertainties, this paper proposes the use of a robust cascade controller based on a reduced-order proportional-integral observer (PIO). In the proposed design, a cascade approach is adopted, where an integral-proportional (IP) controller and a proportional-integral (PI) controller are constructed to set a nominal, desired dynamic response for the closed-loop system. A theoretical analysis, based on the singular perturbation theory, is presented, to confirm the desired approximation of the augmented system with the PIO to the nominal system without the uncertainties. Simulation results suggest that the additional compensation using dual PIOs can be effectively used to improve the robust performance against load change, input voltage variation, and parametric uncertainties.

[1]  Marian K. Kazimierczuk,et al.  Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  P. Müller,et al.  State estimation of dynamical systems with nonlinearities by using proportional-integral observer , 1995 .

[3]  B. Shafai,et al.  Robust control system design with a proportional integral observer , 1989 .

[4]  Shmuel Ben-Yaakov,et al.  H/sup /spl infin// control applied to boost power converters , 1997 .

[5]  H. Sira-Ramirez,et al.  Robust Passivity-Based Control of a Buck–Boost-Converter/DC-Motor System: An Active Disturbance Rejection Approach , 2012, IEEE Transactions on Industry Applications.

[6]  Ouassima Akhrif,et al.  Speed tracking control of a permanent-magnet synchronous motor with state and load torque observer , 2000, IEEE Trans. Ind. Electron..

[7]  Jeang-Lin Chang,et al.  Applying discrete-time proportional Integral observers for state and disturbance estimations , 2006, IEEE Trans. Autom. Control..

[8]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[9]  J. Alvarez-Ramirez,et al.  Current-mode control of DC-DC power converters: a backstepping approach , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[10]  In Hyuk Kim,et al.  Complementary PID Controller to Passivity-Based Nonlinear Control of Boost Converters With Inductor Resistance , 2012, IEEE Transactions on Control Systems Technology.

[11]  In Hyuk Kim,et al.  A Robust State Observer Using Multiple Integrators for Multivariable LTI Systems , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[12]  Wenzhong Gao,et al.  Closed-Loop Analysis and Cascade Control of a Nonminimum Phase Boost Converter , 2011, IEEE Transactions on Power Electronics.

[13]  Jesus Leyva-Ramos,et al.  A controller for a boost converter with harmonic reduction , 2004, IEEE Transactions on Control Systems Technology.

[14]  Prasad N. Enjeti,et al.  Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[15]  In Hyuk Kim,et al.  DESIGN OF AN ADAPTIVE OUTPUT FEEDBACK CONTROLLER FOR A DC / DC BOOST CONVERTER SUBJECT TO LOAD VARIATION , 2010 .

[16]  Hyungbo Shim,et al.  Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer , 2008, Autom..

[17]  Young-Bae Kim,et al.  Robust Time-Delay Control for the DC–DC Boost Converter , 2014, IEEE Transactions on Industrial Electronics.

[18]  Hebertt Sira-Ramírez,et al.  Sliding mode control of DC-to-DC power converters via extended linearization , 1994 .

[19]  S. Hiti,et al.  Robust nonlinear control for boost converter , 1993 .

[20]  Marco Liserre,et al.  Passivity-Based Control by Series/Parallel Damping of Single-Phase PWM Voltage Source Converter , 2014, IEEE Transactions on Control Systems Technology.

[21]  Rong-Jong Wai,et al.  High-Performance Stand-Alone Photovoltaic Generation System , 2008, IEEE Transactions on Industrial Electronics.

[22]  Chok-You Chan,et al.  A Nonlinear Control for DC–DC Power Converters , 2007, IEEE Transactions on Power Electronics.

[23]  Jesus Leyva-Ramos,et al.  Average current controlled switching regulators with cascade boost converters , 2011 .

[24]  Isabelle Queinnec,et al.  Robust LQR Control for PWM Converters: An LMI Approach , 2009, IEEE Transactions on Industrial Electronics.

[25]  Seung-Ki Sul,et al.  Control of Electric Machine Drive Systems , 2011 .

[26]  Said Oucheriah,et al.  PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters , 2013, IEEE Transactions on Industrial Electronics.

[27]  P. Krein,et al.  Singular Perturbation Theory for DC–DC Converters and Application to PFC Converters , 2008, IEEE Transactions on Power Electronics.