On the Witt groups of projective bundles and split quadrics: geometric reasoning

Formulas for the derived Witt groups of projective bundles are obtained. We deduce them from general properties of Witt theory, with the help of twisted Thom isomorphisms, avoiding explicit use of triangulated categories. Witt groups of completely split quadrics are also considered.

[1]  I. Panin Oriented cohomology theories of algebraic varieties II , 2009 .

[2]  A. Nenashev Gysin maps in Balmer–Witt theory , 2007 .

[3]  Stefan Gille The general dévissage theorem for Witt groups of schemes , 2007 .

[4]  A. Nenashev Gysin maps in oriented theories , 2006 .

[5]  Paul Balmer Products of degenerate quadratic forms , 2005, Compositio Mathematica.

[6]  Stefan Gille,et al.  Koszul Complexes and Symmetric Forms over the Punctured Affine Space , 2005 .

[7]  K. Zainoulline,et al.  Oriented cohomology and motivic decompositions of relative cellular spaces , 2004, math/0407082.

[8]  Stefan Gille Homotopy invariance of coherent Witt groups , 2003 .

[9]  Stefan Gille,et al.  Pairings in triangular Witt theory , 2003 .

[10]  Stefan Gille A transfer morphism for Witt groups , 2003 .

[11]  Stefan Gille On Witt groups with support , 2002 .

[12]  Stefan Gille A note on the Witt group of ${\mathbb P}^n$ , 2001 .

[13]  Paul Balmer Witt Cohomology, Mayer–Vietoris, Homotopy Invariance and the Gersten Conjecture , 2001 .

[14]  Paul Balmer Triangular Witt groups Part II: From usual to derived , 2001 .

[15]  Paul Balmer TRIANGULAR WITT GROUPS. PART I : THE 12-TERM LOCALIZATION EXACT SEQUENCE. , 2000 .

[16]  J. Arason Der wittring projektiver Räume , 1980 .

[17]  W. Fulton,et al.  Riemann-Roch and topologicalK-theory for singular varieties , 1979 .

[18]  I. Gel'fand,et al.  Algebraic bundles over Pn and problems of linear algebra , 1978 .