Three-view uncalibrated visual servoing

A new uncalibrated visual servoing approach for motion control of 6-DOF manipulators is presented. Instead of image features, the elements of the scene-independent trifocal tensor of three views is used as features for visual servoing. These trifocal features depend only on the camera projection matrices and can be retrieved from point correspondences across the three views: initial, current, and desired. The Jacobian matrix that relates joint velocities and variations of the trifocal features is estimated online using least-squares. The visual servoing performance is evaluated for various easy and challenging motions, such as the translational motion along the view axis and the large rotation around the view axis. Simulations with a 6-DOF eye-in-hand manipulator show that the proposed uncalibrated approach rapidly converges in all cases.

[1]  François Chaumette,et al.  Point-based and region-based image moments for visual servoing of planar objects , 2005, IEEE Transactions on Robotics.

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[4]  Carlos Sagüés,et al.  Pose-estimation-based visual servoing for differential-drive robots using the 1D trifocal tensor , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Giuseppe Oriolo,et al.  Image-Based Visual Servoing for Nonholonomic Mobile Robots Using Epipolar Geometry , 2007, IEEE Transactions on Robotics.

[6]  Martin Jägersand,et al.  Global Visual-Motor Estimation for Uncalibrated Visual Servoing , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[8]  Josechu J. Guerrero,et al.  Visual control through the trifocal tensor for nonholonomic robots , 2010, Robotics Auton. Syst..

[9]  François Chaumette,et al.  Potential problems of stability and convergence in image-based and position-based visual servoing , 1997 .

[10]  Rajeev Sharma,et al.  The role of exploratory movement in visual servoing without calibration , 1998, Robotics Auton. Syst..

[11]  D. Prattichizzo,et al.  The Epipolar Geometry Toolbox : multiple view geometry and visual servoing for MATLAB , 2005 .

[12]  Domenico Prattichizzo,et al.  A visual servoing algorithm based on epipolar geometry , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  François Chaumette,et al.  Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods , 2002, IEEE Trans. Robotics Autom..

[14]  François Chaumette,et al.  Analysis of classical and new visual servoing control laws , 2008, 2008 IEEE International Conference on Robotics and Automation.

[15]  Harvey Lipkin,et al.  Uncalibrated dynamic visual servoing , 2004, IEEE Transactions on Robotics and Automation.

[16]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[17]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[18]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[19]  Selim Benhimane,et al.  Homography-based 2D visual servoing , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[20]  Martin Jägersand,et al.  Robust Jacobian Estimation for Uncalibrated Visual Servoing , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  François Chaumette,et al.  Image moments: a general and useful set of features for visual servoing , 2004, IEEE Transactions on Robotics.

[22]  Philippe Martinet,et al.  Decoupled visual servoing based on the spherical projection of a set of points , 2009, 2009 IEEE International Conference on Robotics and Automation.

[23]  Francois Chaumette,et al.  Potential problems of unstability and divergence in image-based and position-based visual servoing , 1999, 1999 European Control Conference (ECC).

[24]  Richard I. Hartley,et al.  Reconstruction from six-point sequences , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[25]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[26]  Olac Fuentes,et al.  Experimental evaluation of uncalibrated visual servoing for precision manipulation , 1997, Proceedings of International Conference on Robotics and Automation.

[27]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[28]  C. Sagues,et al.  A Sliding Mode Control Law for Epipolar Visual Servoing of Differential-Drive Robots , 2008 .

[29]  Pradeep K. Khosla,et al.  Vision resolvability for visually servoed manipulation , 1996 .

[30]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[31]  Danica Kragic,et al.  Nonholonomic epipolar visual servoing , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..