NaCl substrates for high temperature processing and transfer of ultrathin materials

[1]  J. Park,et al.  Ultrafast and Chemically Stable Transfer of Au Nanomembrane Using a Water-Soluble NaCl Sacrificial Layer for Flexible Solar Cells. , 2019, ACS applied materials & interfaces.

[2]  Xiangbin Zeng,et al.  The morphological control of MoS2 films using a simple model under chemical vapor deposition , 2018, Thin Solid Films.

[3]  F. Kang,et al.  Flexible photodetector based on large-area few-layer MoS2 , 2018, Progress in Natural Science: Materials International.

[4]  V. Pruneri,et al.  Tunable plasmons in ultrathin metal films , 2018, Nature Photonics.

[5]  K. Yuan,et al.  Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution , 2018, Nano Energy.

[6]  Hak Ki Yu,et al.  Recrystallized NaCl from Thin Film to Nano-/Microsized Sacrificial Crystal for Metal Nanostructures , 2018, Crystal Growth & Design.

[7]  A. Larsen,et al.  Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells. , 2017, Nanoscale.

[8]  Valerio Pruneri,et al.  Structural Coloring of Glass Using Dewetted Nanoparticles and Ultrathin Films of Metals , 2016 .

[9]  J. Warner,et al.  Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.

[10]  Changjian Zhou,et al.  Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film , 2015, Scientific Reports.

[11]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[12]  Kwanghee Lee,et al.  Polymer-metal hybrid transparent electrodes for flexible electronics , 2015, Nature Communications.

[13]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[14]  Yifan Sun,et al.  Correction to transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[15]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[16]  Harish Bhaskaran,et al.  Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition , 2014 .

[17]  V. Pruneri,et al.  Monolithically integrated micro- and nanostructured glass surface with antiglare, antireflection, and superhydrophobic properties. , 2014, ACS applied materials & interfaces.

[18]  L. Guo,et al.  Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. , 2014, ACS nano.

[19]  Takat B. Rawal,et al.  Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application , 2014 .

[20]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[21]  Heung Cho Ko,et al.  Flexible Electronics: Highly Flexible and Transparent Multilayer MoS2 Transistors with Graphene Electrodes (Small 19/2013) , 2013 .

[22]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[23]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[24]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[25]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[26]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[27]  R. Ahuja,et al.  Single-layer MoS2 as an efficient photocatalyst , 2012, 1211.4052.

[28]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[29]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[30]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[31]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[32]  Dermot O'Hare,et al.  Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. , 2012, Chemical reviews.

[33]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[34]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[35]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[36]  John W. Connell,et al.  Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets , 2010 .

[37]  S. Feng,et al.  Synthesis of single nanocrystal phase γ′-Fe4N on NaCl substrate by DC magnetron sputtering , 2006 .

[38]  G. Whitesides,et al.  Water-soluble sacrificial layers for surface micromachining. , 2005, Small.

[39]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[40]  D. Cherns,et al.  The oriented growth of ZnO films on NaCl substrates by pulsed laser ablation , 2002 .

[41]  N. Barreau,et al.  Characteristics of Photoconductive MoS2 Films Grown on NaCl Substrates by a Sequential Process , 2001 .

[42]  Yukio Yamada,et al.  Cubic Crystals in Ti Films Evaporated on NaCl Substrates , 1990 .

[43]  G. V. Bunton,et al.  Epitaxial thin films of ZnS and GaAs prepared by R.F. sputtering on NaCl substrates , 1972 .

[44]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[45]  J. W. Matthews Growth of Face-Centered-Cubic Metals on Sodium Chloride Substrates , 1966 .

[46]  Nazma N. Inamdar,et al.  Preparation, Properties, and Applications , 2013 .