Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

[1]  R. Siebert,et al.  Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function , 2012, Science.

[2]  E. Feuille The Antibacterial Lectin RegIII-Gamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2012 .

[3]  M. Johansson,et al.  Keeping Bacteria at a Distance , 2011, Science.

[4]  R. Ley,et al.  The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2011, Science.

[5]  C. Huttenhower,et al.  The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. , 2011, Cell host & microbe.

[6]  Vineet K. Sharma,et al.  Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. , 2011, Cell host & microbe.

[7]  B. Finlay,et al.  The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization , 2011, PloS one.

[8]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[9]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[10]  P. Hugenholtz,et al.  Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities , 2010, PLoS biology.

[11]  M. Hornef,et al.  miR-146a mediates protective innate immune tolerance in the neonate intestine. , 2010, Cell host & microbe.

[12]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[13]  D. Relman,et al.  Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation , 2010, Proceedings of the National Academy of Sciences.

[14]  G. Eberl,et al.  Bacteria and MAMP-induced morphogenesis of the immune system. , 2010, Current opinion in immunology.

[15]  D. Kasper,et al.  Microbiota-stimulated immune mechanisms to maintain gut homeostasis. , 2010, Current opinion in immunology.

[16]  Christophe Benoist,et al.  Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. , 2010, Immunity.

[17]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[18]  M. Sakamoto,et al.  Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis , 2010, Proceedings of the National Academy of Sciences.

[19]  C. Benoist,et al.  Genomic definition of multiple ex vivo regulatory T cell subphenotypes , 2010, Proceedings of the National Academy of Sciences.

[20]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[21]  D. Kasper,et al.  Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. , 2010, Cell host & microbe.

[22]  Y. Belkaid,et al.  Microbial control of regulatory and effector T cell responses in the gut. , 2010, Current opinion in immunology.

[23]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[24]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[25]  Annaïg Lan,et al.  The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. , 2009, Immunity.

[26]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[27]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[28]  N. Salzman,et al.  Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric Salmonella Infection , 2009, Infection and Immunity.

[29]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[30]  L. Eckmann,et al.  Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface , 2008, Proceedings of the National Academy of Sciences.

[31]  R. Knight,et al.  Worlds within worlds: evolution of the vertebrate gut microbiota , 2008, Nature Reviews Microbiology.

[32]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[33]  Yi-neng Wu,et al.  The Obligate Mutualist Wigglesworthia glossinidia Influences Reproduction, Digestion, and Immunity Processes of Its Host, the Tsetse Fly , 2008, Applied and Environmental Microbiology.

[34]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[35]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[36]  Chen Dong,et al.  T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. , 2008, Immunity.

[37]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[38]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[39]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[40]  K. McCoy,et al.  Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. , 2007, Seminars in immunology.

[41]  Jeffrey I. Gordon,et al.  Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection , 2006, Cell.

[42]  I. Williams,et al.  CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. , 2006, Immunity.

[43]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[44]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[45]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[46]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[48]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[49]  W. Goldman,et al.  Microbial Factor-Mediated Development in a Host-Bacterial Mutualism , 2004, Science.

[50]  M. Rescigno,et al.  Mucosal dendritic cells in immunity and inflammation , 2004, Nature Immunology.

[51]  Si-young Song,et al.  Retinoic acid imprints gut-homing specificity on T cells. , 2004, Immunity.

[52]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[53]  A. Imaoka,et al.  Improvement of human faecal flora‐associated mouse model for evaluation of the functional foods , 2004, Journal of applied microbiology.

[54]  Yongwon Choi,et al.  An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells , 2004, Nature Immunology.

[55]  Wolfgang Weninger,et al.  Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells , 2003, Nature.

[56]  E. Kunkel,et al.  Chemokines in Lymphocyte Trafficking and Intestinal Immunity , 2003, Microcirculation.

[57]  A. Mowat,et al.  Anatomical basis of tolerance and immunity to intestinal antigens , 2003, Nature Reviews Immunology.

[58]  H. Macdonald,et al.  Precursors of Functional MHC Class I- or Class II-Restricted CD8αα+ T Cells Are Positively Selected in the Thymus by Agonist Self-Peptides , 2002 .

[59]  H. Macdonald,et al.  Precursors of functional MHC class I- or class II-restricted CD8alphaalpha(+) T cells are positively selected in the thymus by agonist self-peptides. , 2002, Immunity.

[60]  C. Karp,et al.  The germless theory of allergic disease: revisiting the hygiene hypothesis , 2001, Nature Reviews Immunology.

[61]  B. Finlay,et al.  Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. , 2000, The Journal of infectious diseases.

[62]  A. Imaoka,et al.  Differential Roles of Segmented Filamentous Bacteria and Clostridia in Development of the Intestinal Immune System , 1999, Infection and Immunity.

[63]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[64]  M. Collins,et al.  Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". , 1995, International journal of systematic bacteriology.

[65]  S. Tonegawa,et al.  Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice , 1993, Cell.

[66]  A. Beynen,et al.  Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species , 1993, Laboratory animals.

[67]  AC Tose Cell , 1993, Cell.

[68]  S. Tonegawa,et al.  Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization , 1990, The Journal of experimental medicine.