Bub1 Kinase and Sgo1 Modulate Pericentric Chromatin in Response to Altered Microtubule Dynamics

[1]  E. Salmon,et al.  Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells , 1976, The Journal of cell biology.

[2]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[3]  J Waters,et al.  A high-resolution multimode digital microscope system. , 1998, Methods in cell biology.

[4]  Nancy Kleckner,et al.  Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region , 1999, Cell.

[5]  E. Salmon,et al.  The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae , 1999, Nature Cell Biology.

[6]  G. Goshima,et al.  Establishing Biorientation Occurs with Precocious Separation of the Sister Kinetochores, but Not the Arms, in the Early Spindle of Budding Yeast , 2000, Cell.

[7]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[8]  E. Salmon,et al.  Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. , 2001, Molecular biology of the cell.

[9]  E. Salmon,et al.  Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. , 2003, Molecular biology of the cell.

[10]  R. Nicklas,et al.  Micromanipulation of Chromosomes Reveals that Cohesion Release during Cell Division Is Gradual and Does Not Require Tension , 2004, Current Biology.

[11]  J. Derisi,et al.  The Kinetochore Is an Enhancer of Pericentric Cohesin Binding , 2004, PLoS biology.

[12]  Kerry Bloom,et al.  Dynamic Microtubules Lead the Way for Spindle Positioning , 2004, Nature Reviews Molecular Cell Biology.

[13]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[14]  S. Biggins,et al.  The spindle checkpoint: tension versus attachment. , 2005, Trends in cell biology.

[15]  G Danuser,et al.  Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy. , 2005, Biophysical journal.

[16]  E. Salmon,et al.  Molecular architecture of a kinetochore–microtubule attachment site , 2006, Nature Cell Biology.

[17]  A. Murray,et al.  Budding Yeast Mitotic Chromosomes Have an Intrinsic Bias to Biorient on the Spindle , 2007, Current Biology.

[18]  K. Hardwick,et al.  Bub1 Kinase Targets Sgo1 to Ensure Efficient Chromosome Biorientation in Budding Yeast Mitosis , 2007, PLoS genetics.

[19]  P. Megee,et al.  The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. , 2007, Genes & development.

[20]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[21]  Ajit P. Joglekar,et al.  Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. , 2008, Annual review of genetics.

[22]  Julian Haase,et al.  Pericentric Chromatin Is Organized into an Intramolecular Loop in Mitosis , 2008, Current Biology.

[23]  A. Desai,et al.  Molecular architecture of the kinetochore–microtubule interface , 2008, Nature Reviews Molecular Cell Biology.

[24]  Bruce F. McEwen,et al.  Protein Architecture of the Human Kinetochore Microtubule Attachment Site , 2009, Cell.

[25]  Benjamin D. Harrison,et al.  Persistent mechanical linkage between sister chromatids throughout anaphase , 2009, Chromosoma.

[26]  K. Bloom,et al.  Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. , 2009, Molecular biology of the cell.

[27]  S. Biggins,et al.  Pericentromeric sister chromatid cohesion promotes kinetochore biorientation. , 2009, Molecular biology of the cell.

[28]  L. Nezi,et al.  Sister chromatid tension and the spindle assembly checkpoint. , 2009, Current opinion in cell biology.

[29]  E. Salmon,et al.  Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity , 2009, The Journal of cell biology.

[30]  K. Takagaki,et al.  Kinetochore stretching inactivates the spindle assembly checkpoint , 2009, The Journal of cell biology.

[31]  Kerry Bloom,et al.  In Vivo Protein Architecture of the Eukaryotic Kinetochore with Nanometer Scale Accuracy , 2009, Current Biology.

[32]  R. Superfine,et al.  DNA relaxation dynamics as a probe for the intracellular environment , 2009, Proceedings of the National Academy of Sciences.

[33]  A. Musacchio,et al.  The life and miracles of kinetochores , 2009, The EMBO journal.

[34]  K. Bloom,et al.  Tension Management in the Kinetochore , 2010, Current Biology.

[35]  Yoshinori Watanabe,et al.  Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing Shugoshin , 2010, Science.

[36]  Yuya Yamagishi,et al.  Two Histone Marks Establish the Inner Centromere and Chromosome Bi-Orientation , 2010, Science.

[37]  K. Nasmyth,et al.  Both Interaction Surfaces within Cohesin's Hinge Domain Are Essential for Its Stable Chromosomal Association , 2010, Current Biology.

[38]  Gaudenz Danuser,et al.  Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases , 2010, The Journal of cell biology.

[39]  Kerry Bloom,et al.  Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring , 2011, The Journal of cell biology.

[40]  Frederick S. Vizeacoumar,et al.  Systematic exploration of essential yeast gene function with temperature-sensitive mutants , 2011, Nature Biotechnology.

[41]  T. Hori,et al.  Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins , 2011, The Journal of cell biology.