Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

The approximate message passing (AMP) algorithm shows advantage over conventional convex optimization methods in recovering under-sampled sparse signals. AMP is analytically tractable and has a much lower complexity. However, it requires that the true parameters of the input and output channels are known. In this paper, we propose an AMP algorithm with built-in parameter estimation that jointly estimates the sparse signals along with the parameters by treating them as unknown random variables with simple priors. Specifically, the maximum a posterior (MAP) parameter estimation is presented and shown to produce estimations that converge to the true parameter values. Experiments on sparse signal recovery show that the performance of the proposed approach matches that of the oracle AMP algorithm where the true parameter values are known.

[1]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[2]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[3]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[6]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[7]  Philip Schniter,et al.  Expectation-maximization Bernoulli-Gaussian approximate message passing , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[8]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[9]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[13]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[15]  Michael Unser,et al.  Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning , 2012, IEEE Transactions on Information Theory.

[16]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.