Multivariate compactly supported biorthogonal spline wavelets
暂无分享,去创建一个
[1] Serge Dubuc,et al. Multidimensional Iterative Interpolation , 1991, Canadian Journal of Mathematics.
[2] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[3] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[4] Hans Volkmer. On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.
[5] B. Sturmfels,et al. Algorithms for the Quillen-Suslin theorem , 1992 .
[6] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[7] Ali N. Akansu,et al. A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation , 1993, IEEE Trans. Signal Process..
[8] C. D. Boor,et al. Box splines , 1993 .
[9] Charles K. Chui,et al. A General Framework of Multivariate Wavelets with Duals , 1994 .
[10] A. Cohen,et al. Wavelets and Multiscale Signal Processing , 1995 .
[11] G. Weiss,et al. A First Course on Wavelets , 1996 .
[12] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[13] Qiyu Sun,et al. A class of $M$-dilation scaling functions with regularity growing proportionally to filter support width , 1998 .
[14] Zuowei Shen,et al. Construction of compactly supported biorthogonal wavelets: II , 1999, Optics & Photonics.
[15] Paolo M. Soardi,et al. Biorthogonal M -Channel Compactly Supported Wavelets , 2000 .