SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2

[1]  Eric Legius,et al.  PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies , 2014, Nature.

[2]  Ellen T. Gelfand,et al.  Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies , 2014, Scientific Data.

[3]  I. Shih,et al.  Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. , 2014, Journal of the National Cancer Institute.

[4]  S. Orkin,et al.  Targeted Disruption of the EZH2/EED Complex Inhibits EZH2-dependent Cancer , 2013, Nature chemical biology.

[5]  G. Crabtree,et al.  Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy , 2013, Nature Genetics.

[6]  Tim J. Wigle,et al.  Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 , 2013, Proceedings of the National Academy of Sciences.

[7]  Pablo Tamayo,et al.  ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens , 2013, Genome research.

[8]  Giovanni Parmigiani,et al.  Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma , 2012, Nature Genetics.

[9]  S. Orkin,et al.  Targeted Disruption of the EZH 2 / EED Complex Inhibits EZH 2-dependent Cancer , 2013 .

[10]  M. Loda,et al.  EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is Polycomb-Independent , 2012, Science.

[11]  P. Atadja,et al.  Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation , 2012, Proceedings of the National Academy of Sciences.

[12]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[13]  Tim J. Wigle,et al.  A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. , 2012, Nature chemical biology.

[14]  Dennis C. Sgroi,et al.  Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes , 2016 .

[15]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[16]  Keith A. Boroevich,et al.  Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators , 2012, Nature Genetics.

[17]  Yong Jiang,et al.  Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27) , 2012, Proceedings of the National Academy of Sciences.

[18]  G. Ganji,et al.  EZH 2 inhibition as a therapeutic strategy for lymphoma with EZH 2-activating mutations , 2012 .

[19]  Michael A Choti,et al.  Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma , 2011, Nature Genetics.

[20]  Huanming Yang,et al.  Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder , 2011, Nature Genetics.

[21]  J. Mesirov,et al.  Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer , 2011, Proceedings of the National Academy of Sciences.

[22]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.

[23]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[24]  Manuel Hidalgo,et al.  Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer , 2011, Proceedings of the National Academy of Sciences.

[25]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[26]  M. Hung,et al.  CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells , 2011, Nature Cell Biology.

[27]  Scott L Pomeroy,et al.  Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. , 2010, Cancer cell.

[28]  Richard A. Moore,et al.  ARID1A mutations in endometriosis-associated ovarian carcinomas. , 2010, The New England journal of medicine.

[29]  Tian-Li Wang,et al.  Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma , 2010, Science.

[30]  Keith L. Ligon,et al.  Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples , 2009, PloS one.

[31]  B. Weissman,et al.  Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. , 2009, Cancer research.

[32]  D. Reinberg,et al.  Role of the polycomb protein EED in the propagation of repressive histone marks , 2009, Nature.

[33]  G. Crabtree,et al.  Understanding the Words of Chromatin Regulation , 2009, Cell.

[34]  Jun Yokota,et al.  Frequent BRG1/SMARCA4–inactivating mutations in human lung cancer cell lines , 2008, Human mutation.

[35]  C. Verrijzer,et al.  SWI/SNF Mediates Polycomb Eviction and Epigenetic Reprogramming of the INK4b-ARF-INK4a Locus , 2008, Molecular and Cellular Biology.

[36]  Jason I. Herschkowitz,et al.  Characterization of mammary tumors from Brg1 heterozygous mice , 2008, Oncogene.

[37]  Kristian Helin,et al.  The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation , 2007, Molecular and Cellular Biology.

[38]  Renato Paro,et al.  Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. , 2004, Annual review of genetics.

[39]  Yi Zhang,et al.  SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. , 2004, Molecular cell.

[40]  S. Orkin,et al.  Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. , 2002, Cancer cell.

[41]  R. Kingston,et al.  Stabilization of Chromatin Structure by PRC1, a Polycomb Complex , 1999, Cell.

[42]  J. Kennison The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. , 1995, Annual review of genetics.

[43]  Thomas C. Kaufman,et al.  brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2 SWI2 , 1992, Cell.