The rth Smallest Part Size of a Random Integer Partition
暂无分享,去创建一个
Conrado Martínez | Zhicheng Gao | Daniel Panario | L. Bruce Richmond | Zhicheng Gao | L. Richmond | Zhicheng Gao | D. Panario | C. Martínez
[1] V. E. Stepanov. Limit Distributions of Certain Characteristics of Random Mappings , 1969 .
[2] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory , 1995 .
[3] de Ng Dick Bruijn. On the number of positive integers $\leq x$ and free of prime factors $>y$ , 1951 .
[4] de Ng Dick Bruijn. On the number of uncancelled elements in the sieve of Eratosthenes , 1950 .
[5] Daniel Panario,et al. Smallest components in decomposable structures: Exp-log class , 2001, Algorithmica.
[6] L. Hua,et al. On the number of partitions of a number into unequal parts , 1942 .
[7] Zhicheng Gao,et al. Asymptotics of Smallest Component Sizes in Decomposable Combinatorial Structures of Alg-Log Type , 2010 .
[8] Bert Fristedt,et al. The structure of random partitions of large integers , 1993 .
[9] Gregory A. Freiman,et al. Partitions into distinct large parts , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[10] L. B Richmond. Asymptotic relations for partitions , 1975 .
[11] G. Hardy,et al. Asymptotic formulae in combinatory analysis , 1918 .
[12] András Sárközy,et al. On partitions without small parts , 2000 .
[13] K. Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude , 1930 .
[14] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .