Automatic atom type and bond type perception in molecular mechanical calculations.
暂无分享,去创建一个
P. Kollman | D. Case | Wei Wang | Junmei Wang
[1] Peter Willett,et al. A bibliometric analysis of the Journal of Molecular Graphics and Modelling. , 2007, Journal of molecular graphics & modelling.
[2] Junmei Wang,et al. Development and testing of a general amber force field , 2004, J. Comput. Chem..
[3] Alessandro Pedretti,et al. Atom-type description language: a universal language to recognize atom types implemented in the VEGA program , 2003 .
[4] Christopher I. Bayly,et al. Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..
[5] Junmei Wang,et al. Automatic parameterization of force field by systematic search and genetic algorithms , 2001, J. Comput. Chem..
[6] P. Kollman,et al. Solvation Model Based on Weighted Solvent Accessible Surface Area , 2001 .
[7] Junmei Wang,et al. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..
[8] Araz Jakalian,et al. Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .
[9] T. Halgren. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.
[10] F. Müller-Plathe,et al. Automatic parameterization of force fields for liquids by simplex optimization , 1999, J. Comput. Chem..
[11] Peter A. Kollman,et al. Application of the RESP Methodology in the Parametrization of Organic Solvents , 1998 .
[12] Per-Ola Norrby,et al. Automated molecular mechanics parameterization with simultaneous utilization of experimental and quantum mechanical data , 1998, J. Comput. Chem..
[13] J. Phillip Bowen,et al. Parameter analysis and refinement toolkit system and its application in MM3 parameterization for phosphine and its derivatives , 1996, J. Comput. Chem..
[14] T. Halgren. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .
[15] Thomas A. Halgren,et al. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..
[16] Thomas A. Halgren,et al. Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..
[17] T. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..
[18] Peter A. Kollman,et al. Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..
[19] P. Kollman,et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .
[20] Ming-Jing Hwang,et al. Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules , 1994 .
[21] P. Kollman,et al. A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .
[22] P. Kollman,et al. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .
[23] W. Goddard,et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .
[24] F. Momany,et al. Validation of the general purpose QUANTA ®3.2/CHARMm® force field , 1992 .
[25] S. L. Mayo,et al. DREIDING: A generic force field for molecular simulations , 1990 .
[26] Norman L. Allinger,et al. Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .
[27] R. Cramer,et al. Validation of the general purpose tripos 5.2 force field , 1989 .
[28] W. L. Jorgensen,et al. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.
[29] David Weininger,et al. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..
[30] G. Grisetti,et al. Further Reading , 1984, IEEE Spectrum.
[31] U. Singh,et al. A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .
[32] M. Karplus,et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .
[33] S. Lifson,et al. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot..cntdot..cntdot.H- hydrogen bonds , 1979 .
[34] Norman L. Allinger,et al. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .
[35] MDL Information Systems, Inc. , 1995, Environmental science & technology.