Chaos computing: from theory to application
暂无分享,去创建一个
In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set.
Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model.
Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ.