High pressure, quasi-isentropic compression experiments on the Omega laser

[1]  J. Rogers,et al.  Graded-Density Reservoirs for Accessing High Stress Low Temperature Material States , 2006 .

[2]  Kenneth A. Meyer,et al.  Taylor instability in solids , 1974 .

[3]  Gilbert W. Collins,et al.  Accurate measurement of laser-driven shock trajectories with velocity interferometry , 1998 .

[4]  R. A. Graham,et al.  Shock waves in condensed matter-1981 , 1982 .

[5]  F. Streitz,et al.  Specifically Prescribed Dynamic Thermodynamic Paths and Resolidification Experiments , 2004 .

[6]  Moriarty,et al.  First-principles temperature-pressure phase diagram of magnesium. , 1995, Physical review. B, Condensed matter.

[7]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[8]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[9]  David A. Young,et al.  Phase Diagrams of the Elements , 1991 .

[10]  M. Edwards,et al.  High-pressure, laser-driven deformation of an aluminum alloy , 2004 .

[11]  W. Nellis,et al.  Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 GPa (0.8–4.4 Mbar) , 2003 .

[12]  A. Jankowski,et al.  The evaporative deposition of aluminum coatings and shapes with grain size control , 2003 .

[13]  M. Edwards,et al.  Accessing High Pressure States Relevant to Core Conditions in the Giant Planets , 2005 .

[14]  M. Knudson,et al.  Adiabatic release measurements in aluminum from 240-to500-GPa states on the principal Hugoniot , 2005 .

[15]  Marcus D. Knudson,et al.  Measurement of the compression isentrope for 6061-T6 aluminum to 185GPa and 46% volumetric strain using pulsed magnetic loading , 2004 .

[16]  R. Mcqueen,et al.  SHOCK-WAVE COMPRESSIONS OF TWENTY-SEVEN METALS. EQUATIONS OF STATE OF METALS , 1957 .

[17]  William A. Stygar,et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading , 2001 .

[18]  David H. Sharp,et al.  Further experimentation on Taylor instability in solids , 1980 .

[19]  M. Knudson,et al.  Magnetically driven isentropic compression experiments on the Z accelerator , 2001 .

[20]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[21]  B. Yaakobi,et al.  Materials science under extreme conditions of pressure and strain rate , 2004 .

[22]  David K. Bradley,et al.  Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility , 2004 .

[23]  M. Meyers,et al.  Material dynamics under extreme conditions of pressure and strain rate , 2005 .

[24]  Y. Ohishi,et al.  Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. , 2006, Physical review letters.

[25]  J. W. Swegle,et al.  Shock viscosity and the prediction of shock wave rise times , 1985 .

[26]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[27]  A. J. Cable,et al.  High-velocity impact phenomena , 1970 .

[28]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[29]  J Edwards,et al.  Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. , 2004, Physical review letters.

[30]  James R. Asay,et al.  The use of shock-structure methods for evaluating high-pressure material properties , 1997 .

[31]  Alan F. Jankowski,et al.  Activation energies of grain growth mechanisms in aluminum coatings , 2005 .

[32]  D. Hayes Unsteady compression waves in interferometer windows , 2001 .

[33]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[34]  Boettger,et al.  High-precision calculation of the equation of state and crystallographic phase stability for aluminum. , 1996, Physical review. B, Condensed matter.

[35]  Dennis Brewster,et al.  Backward Integration of the Equations of Motion to Correct for Free Surface Perturbations , 2001 .