Continuous-time term structure models: Forward measure approach

Abstract. The problem of term structure of interest rates modelling is considered in a continuous-time framework. The emphasis is on the bond prices, forward bond prices and so-called LIBOR rates, rather than on the instantaneous continuously compounded rates as in most traditional models. Forward and spot probability measures are introduced in this general set-up. Two conditions of no-arbitrage between bonds and cash are examined. A process of savings account implied by an arbitrage-free family of bond prices is identified by means of a multiplicative decomposition of semimartingales. The uniqueness of an implied savings account is established under fairly general conditions. The notion of a family of forward processes is introduced, and the existence of an associated arbitrage-free family of bond prices is examined. A straightforward construction of a lognormal model of forward LIBOR rates, based on the backward induction, is presented.