Data Assimilation Methods for Land Surface Variable Estimation

[1]  Hongliang Fang,et al.  Corn‐yield estimation through assimilation of remotely sensed data into the CSM‐CERES‐Maize model , 2008 .

[2]  J. Townshend,et al.  Spatially and temporally continuous LAI data sets based on an integrated filtering method: Examples from North America , 2008 .

[3]  J. Townshend,et al.  Developing a spatially continuous 1 km surface albedo data set over North America from Terra MODIS products , 2007 .

[4]  Bo Hu,et al.  A Weak-Constraint-Based Data Assimilation Scheme for Estimating Surface Turbulent Fluxes , 2007, IEEE Geoscience and Remote Sensing Letters.

[5]  N. Verhoest,et al.  Optimization of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter , 2007 .

[6]  Russell K. Monson,et al.  Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis , 2007, Oecologia.

[7]  Yann Kerr,et al.  Assimilation of Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data , 2006 .

[8]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[9]  W. J. Shuttleworth,et al.  Toward a South America Land Data Assimilation System: Aspects of land surface model spin‐up using the Simplified Simple Biosphere , 2006 .

[10]  D. McLaughlin,et al.  Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation , 2006 .

[11]  José A. Sobrino,et al.  Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999 , 2006 .

[12]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Li Xiaowen,et al.  Application of ensemble kalman filter to geophysical parameters retrieval in remote sensing: A case study of kernel-driven BRDF model inversion , 2006 .

[14]  L. White,et al.  Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction , 2006 .

[15]  R. Monson,et al.  Model‐data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado , 2006 .

[16]  D. Barrett,et al.  Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods , 2005 .

[17]  Jun Wu,et al.  Parameter estimation of an ecological system by a neural network with residual minimization training , 2005 .

[18]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[19]  R.E.E. Jongschaap,et al.  Predicting wheat production at regional scale by integration of remote sensing data with a simulation model , 2005 .

[20]  R. Giering,et al.  Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS) , 2005 .

[21]  Dick Dee,et al.  Forecast Model Bias Correction in Ocean Data Assimilation , 2005 .

[22]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[23]  A. Ito,et al.  Estimation of net primary productivity by integrating remote sensing data with an ecosystem model , 2005 .

[24]  Steven Platnick,et al.  Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Luis A. Bastidas,et al.  Constraining a physically based Soil‐Vegetation‐Atmosphere Transfer model with surface water content and thermal infrared brightness temperature measurements using a multiobjective approach , 2005 .

[26]  B. Law,et al.  An improved analysis of forest carbon dynamics using data assimilation , 2005 .

[27]  Philippe Ciais,et al.  Quantifying, Understanding and Managing the Carbon Cycle in the Next Decades , 2004 .

[28]  Thomas J. Jackson,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[29]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[30]  Toshio Koike,et al.  A very fast simulated re-annealing (VFSA) approach for land data assimilation , 2004, Comput. Geosci..

[31]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[32]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[33]  Svetlana N. Losa,et al.  Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data? , 2004 .

[34]  Fabio Castelli,et al.  Estimation of Surface Turbulent Fluxes through Assimilation of Radiometric Surface Temperature Sequences , 2004 .

[35]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[36]  W. Crow Correcting Land Surface Model Predictions for the Impact of Temporally Sparse Rainfall Rate Measurements Using an Ensemble Kalman Filter and Surface Brightness Temperature Observations , 2003 .

[37]  Tatsuoki Takeda,et al.  Applying a Neural Network Collocation Method to an Incompletely Known Dynamical System via Weak Constraint Data Assimilation , 2003 .

[38]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[39]  R. Dickinson,et al.  The Common Land Model , 2003 .

[40]  A. J. Stern,et al.  Crop Yield Assessment from Remote Sensing , 2003 .

[41]  Fabio Castelli,et al.  Mapping of Land-Atmosphere Heat Fluxes and Surface Parameters with Remote Sensing Data , 2003 .

[42]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[43]  Damian Barrett,et al.  Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple‐constraint approach , 2003 .

[44]  Ji‐Hua Wang,et al.  Study on the interaction between NDVI profile and the growing status of crops , 2003 .

[45]  Andreas Griewank,et al.  Introduction to Automatic Differentiation , 2003 .

[46]  Tatsuoki Takeda,et al.  Optimal estimation of parameters of dynamical systems by neural network collocation method , 2003 .

[47]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[48]  Damian J. Barrett,et al.  Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach I. Using remotely sensed data and ecological observations of net primary production , 2003 .

[49]  Thomas Kaminski,et al.  Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle , 2002 .

[50]  Damian Barrett,et al.  Steady state turnover time of carbon in the Australian terrestrial biosphere , 2002 .

[51]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[52]  Christian H. Bischof,et al.  Implementation of automatic differentiation tools , 2002, PEPM '02.

[53]  Tatsuoki Takeda,et al.  Application of neural network collocation method to data assimilation , 2001 .

[54]  D. Entekhabi,et al.  Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment , 2001 .

[55]  Rolf Reichle,et al.  Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications , 2001, IEEE Trans. Geosci. Remote. Sens..

[56]  Jetse D. Kalma,et al.  One-Dimensional Soil Moisture Profile Retrieval by Assimilation of Near-Surface Measurements: A Simplified Soil Moisture Model and Field Application , 2001 .

[57]  Paul R. Houser,et al.  A methodology for initializing soil moisture in a global climate model: Assimilation of near‐surface soil moisture observations , 2001 .

[58]  Giorgio Boni,et al.  Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation , 2001 .

[59]  Jetse D. Kalma,et al.  One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms , 2001 .

[60]  W. Hsieh,et al.  Coupling Neural Networks to Incomplete Dynamical Systems via Variational Data Assimilation , 2001 .

[61]  G. Evensen,et al.  A weak constraint inverse for a zero-dimensional marine ecosystem model , 2001 .

[62]  M. Guérif,et al.  Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation , 2000 .

[63]  Thomas Kaminski,et al.  Recomputations in reverse mode AD , 2000 .

[64]  Fabio Castelli,et al.  Estimation of surface heat flux and an index of soil moisture using adjoint‐state surface energy balance , 1999 .

[65]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[66]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[67]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[68]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[69]  M. Iredell,et al.  Global Data Assimilation and Forecast Experiments Using SSM/I Wind Speed Data Derived from a Neural Network Algorithm , 1997 .

[70]  Gérard Dedieu,et al.  Coupling satellite data with vegetation functional models: Review of different approaches and perspectives suggested by the assimilation strategy , 1997 .

[71]  F. Potra,et al.  Sensitivity analysis for atmospheric chemistry models via automatic differentiation , 1997 .

[72]  Christian Bischof,et al.  Adifor 2.0: automatic differentiation of Fortran 77 programs , 1996 .

[73]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[74]  J. Clevers,et al.  Combined use of optical and microwave remote sensing data for crop growth monitoring , 1996 .

[75]  Klaus Schittkowski,et al.  Algorithm 746: PCOMP—a Fortran code for automatic differentiation , 1995, TOMS.

[76]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[77]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[78]  Dara Entekhabi,et al.  Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations , 1994, IEEE Trans. Geosci. Remote. Sens..

[79]  S. Maas Within-Season Calibration of Modeled Wheat Growth Using Remote Sensing and Field Sampling , 1993 .

[80]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[81]  Bas A. M. Bouman,et al.  Linking physical remote sensing models with crop growth simulation models, applied for sugar beet , 1992 .

[82]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[83]  R. Daley Atmospheric Data Analysis , 1991 .

[84]  L. Ingber Very fast simulated re-annealing , 1989 .

[85]  Stephan J. Maas,et al.  Using Satellite Data to Improve Model Estimates of Crop Yield , 1988 .

[86]  J. Wright Daily and seasonal evapotranspiration and yield of irrigated alfalfa in southern Idaho , 1988 .

[87]  Stephan J. Maas,et al.  Use of remotely-sensed information in agricultural crop growth models , 1988 .

[88]  F. Hall,et al.  Global Crop Forecasting , 1980, Science.

[89]  James W. Jones,et al.  ESTIMATING SOIL CARBON LEVELS USING AN ENSEMBLE KALMAN FILTER , 2004 .

[90]  A. O'Neill,et al.  Making the most of earth observation with data assimilation , 2004 .

[91]  J. Stafford,et al.  The use of radiative transfer models for remote sensing data assimilation in crop growth models. , 2003 .

[92]  Praveen Kumar,et al.  Assimilation of near-surface temperature using extended Kalman filter , 2003 .

[93]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[94]  A. Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2002, Springer New York.

[95]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[96]  Giorgio Boni,et al.  Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components , 2001, IEEE Trans. Geosci. Remote. Sens..

[97]  A. Denning,et al.  Global Terrestrial Carbon Observation: Requirements, Present Status, and Next Steps , 2000 .

[98]  Rolf H. Reichle,et al.  Variational assimilation of remote sensing data for land surface hydrologic applications , 2000 .

[99]  Frédéric Baret,et al.  Maximum information exploitation for canopy characterization by remote sensing. , 2000 .

[100]  A. Bondeau,et al.  Combining agricultural crop models and satellite observations: from field to regional scales , 1998 .

[101]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .