A finite-element/boundary-element method for large-displacement fluid-structure interaction

We present a combined finite-element/boundary-element method to simulate inflation processes, characterized by a light, folded structure enveloping a viscous fluid. The application of the boundary-element method to approximate the flow allows for automatic evolution of the problem domain according to the kinematic condition. Moreover, it provides an intrinsic mechanism to treat the ubiquitous self-contact, common to inflation problems. We numerically verify that self-contact is indeed prevented and demonstrate the versatility and robustness of this method.

[1]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[2]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[3]  F. White Viscous Fluid Flow , 1974 .

[4]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[5]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[6]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[7]  Luiz C. Wrobel,et al.  Boundary Integral Methods in Fluid Mechanics , 1995 .

[8]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[9]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[10]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[11]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[12]  E. Ramm,et al.  Chapter 3 Models and Finite Elements for Thin-walled Structures , 2004 .

[13]  G. C. Hsiao,et al.  Boundary Element Methods: Foundation and Error Analysis , 2004 .

[14]  Fehmi Cirak,et al.  A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets , 2003 .

[15]  Wulf G. Dettmer,et al.  An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction , 2007 .

[16]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[17]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[18]  Fundamentals of Fluid–Structure Interaction , 2010 .

[19]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[20]  Wei Shyy,et al.  Encyclopedia of Aerospace Engineering , 2010 .

[21]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[22]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[23]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[24]  van Tm Timo Opstal,et al.  Model comparison for inflatables using boundary element techniques , 2012 .

[25]  van Tm Timo Opstal,et al.  A potential-flow BEM for large-displacement FSI , 2012 .