A New Parameterization of the Attitude Kinematics

We present a new method for describing the kinematics of the rotational motion of a rigid body The new kinematic formulation provides a three dimensional parameterization of the rotation group using two perpendicular rotations thus it complements the Eulerian angles three rotations and Euler Rodrigues parameters one rotation The di erential equations can be described by two scalar equations We show the connection of the new parameterization with the other classical parameterizations The new kinematic formulation has potential applications in astrodynamics attitude control robotics and other elds

[1]  E. Bois,et al.  First-order theory of satellite attitude motion application to HIPPARCOS , 1986 .

[2]  DynamicsJames M. Longuski,et al.  Analytic Solution of the Large Angle Problem in Rigid Body Attitude Dynamics , 1995 .

[3]  Richard Montgomery,et al.  Gauge theory of the falling cat , 1993 .

[4]  J. V. D. Ha,et al.  Perturbation solution of attitude motion under body-fixed torques , 1985 .

[5]  G. C. Walsh,et al.  Orientation Control of a Satellite , 1995 .

[6]  M. Shuster A survey of attitude representation , 1993 .

[7]  Panagiotis Tsiotras,et al.  Spin-axis stabilization of symmetric spacecraft with two control torques , 1994 .

[8]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .

[9]  John L. Junkins,et al.  Analytical solutions for Euler parameters , 1974 .

[10]  James M. Longuski,et al.  On Attitude Stabilization of Symmetric Spacecraft with Two Control Torques , 1993, 1993 American Control Conference.

[11]  John L. Junkins,et al.  Perturbation formulations for satellite attitude dynamics , 1974 .

[12]  P. Tsiotras,et al.  New kinematic relations for the large angle problem in rigid body attitude dynamics , 1994 .

[13]  S. R. Marandi,et al.  A preferred coordinate system and the associated orientation representation in attitude dynamics , 1987 .

[14]  J. Junkins,et al.  Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .

[15]  M. Shuster The kinematic equation for the rotation vector , 1993 .

[16]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[17]  J. H. van Lint,et al.  Functions of one complex variable II , 1997 .

[18]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[19]  Panagiotis Tsiotras,et al.  A complex analytic solution for the attitude motion of a near-symmetric rigid body under body-fixed torques , 1991 .

[20]  James M. Longuski Real solutions for the attitude motion of a self-excited rigid body , 1991 .

[21]  D. T. Greenwood Principles of dynamics , 1965 .

[22]  J. W. Humberston Classical mechanics , 1980, Nature.