Effect of microwave sintering on microstructure and mechanical properties in Y-TZP materials used for dental applications

[1]  P. Plaza-González,et al.  Adaptive microwave system for optimum new material sintering , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[2]  C. Alcázar,et al.  Enhanced Hydrothermal Resistance of Y‐TZP Ceramics Through Colloidal Processing , 2013 .

[3]  A. Borrell,et al.  Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties , 2013 .

[4]  E. Monaco,et al.  Applying microwave technology to sintering dental zirconia. , 2012, The Journal of prosthetic dentistry.

[5]  K. Vanmeensel,et al.  Influence of sintering conditions on low-temperature degradation of dental zirconia. , 2014, Dental materials : official publication of the Academy of Dental Materials.

[6]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[7]  R. Kiminami,et al.  Microwave sintering of alumina–zirconia nanocomposites , 2008 .

[8]  C. B. Carter,et al.  Ceramic Materials: Science and Engineering , 2013 .

[9]  Z. A. Munir,et al.  Fast low-temperature consolidation of bulk nanometric ceramic materials , 2006 .

[10]  Michael V Swain,et al.  Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. , 2004, Dental materials : official publication of the Academy of Dental Materials.

[11]  M. Monzó,et al.  Sintering of (Cu0.25Ni0.25Zn0.50)Fe2O4 Ferrite , 2004 .

[12]  E. Papazoglou,et al.  Microwave firing of MnZn-ferrites , 2004 .

[13]  M. Swain,et al.  Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. , 2002, The International journal of prosthodontics.

[14]  A. K. Suri,et al.  Microwave sintering of zirconia ceramics , 2001 .

[15]  David E. Clark,et al.  Processing materials with microwave energy , 2000 .

[16]  A. Goldstein,et al.  Direct microwave sintering of yttria-stabilized zirconia at 2·45 GHz , 1999 .

[17]  Tsu-Wei Chou,et al.  Microwave processing: fundamentals and applications , 1999 .

[18]  D. Patil,et al.  Microwave sintering of yttria-containing tetragonal zirconia polycrystal (Y-TZP) ceramics , 1994 .

[19]  T. Meek,et al.  Characterization of ZrO2-Al2O3 composites sintered in a 2.45 GHz electromagnetic field , 1991 .

[20]  Jack Wilson,et al.  Microwave Sintering of Partially Stabilized Zirconia , 1988 .

[21]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[22]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[23]  S. Beer,et al.  Strength , 1875, Cybern. Hum. Knowing.

[24]  A. Borrell,et al.  Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques , 2012 .

[25]  A. Bandyopadhyay,et al.  Densification Study and Mechanical Properties of Microwave‐Sintered Mullite and Mullite–Zirconia Composites , 2011 .

[26]  Bala Vaidhyanathan,et al.  Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering , 2008 .

[27]  Abhijit Ghosh,et al.  Microwave sintering of cubic zirconia , 2001 .

[28]  C. Piconi,et al.  Zirconia as a ceramic biomaterial. , 1999, Biomaterials.

[29]  H. Worner,et al.  Sintering and grain growth of 3 mol% yttria zirconia in a microwave field , 1996, Journal of Materials Science.

[30]  Ronald W. Armstrong,et al.  The (cleavage) strength of pre-cracked polycrystals , 1987 .

[31]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .