A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design

Motivated by the need to sequentially design experiments for the collection of data in batches or blocks, a new pseudo-marginal sequential Monte Carlo algorithm is proposed for random effects models where the likelihood is not analytic, and has to be approximated. This new algorithm is an extension of the idealised sequential Monte Carlo algorithm where we propose to unbiasedly approximate the likelihood to yield an efficient exact-approximate algorithm to perform inference and make decisions within Bayesian sequential design. We propose four approaches to unbiasedly approximate the likelihood: standard Monte Carlo integration; randomised quasi-Monte Carlo integration, Laplace importance sampling and a combination of Laplace importance sampling and randomised quasi-Monte Carlo. These four methods are compared in terms of the estimates of likelihood weights and in the selection of the optimal sequential designs in an important pharmacological study related to the treatment of critically ill patients. As the approaches considered to approximate the likelihood can be computationally expensive, we exploit parallel computational architectures to ensure designs are derived in a timely manner.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Peter M. van de Ven,et al.  Blocked Designs for Experiments With Correlated Non-Normal Response , 2011, Technometrics.

[3]  Anthony Y. C. Kuk Laplace Importance Sampling for Generalized Linear Mixed Models , 1999 .

[4]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[5]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[6]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[7]  Paul Fearnhead,et al.  Bayesian Sequential Experimental Design for Binary Response Data with Application to Electromyographic Experiments , 2014 .

[8]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[9]  Kiran Shekar,et al.  The ECMO PK Project: an incremental research approach to advance understanding of the pharmacokinetic alterations and improve patient outcomes during extracorporeal membrane oxygenation , 2013, BMC Anesthesiology.

[10]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[11]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[12]  P. Müller Simulation Based Optimal Design , 2005 .

[13]  Anthony N. Pettitt,et al.  A Review of Modern Computational Algorithms for Bayesian Optimal Design , 2016 .

[14]  Robert B. Gramacy,et al.  Particle Learning of Gaussian Process Models for Sequential Design and Optimization , 2009, 0909.5262.

[15]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[16]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[17]  S. Rosenbaum,et al.  Food Taxation in the United Kingdom, France, Germany, and the United States , 1908 .

[18]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[19]  N. Chopin A sequential particle filter method for static models , 2002 .

[20]  Christopher J Weir,et al.  Flexible Design and Efficient Implementation of Adaptive Dose-Finding Studies , 2007, Journal of biopharmaceutical statistics.

[21]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[22]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[25]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[26]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[27]  John Geweke,et al.  Massively Parallel Sequential Monte Carlo for Bayesian Inference , 2011 .

[28]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[29]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[30]  Peter Müller,et al.  Optimal sampling times in population pharmacokinetic studies , 2001 .

[31]  Kathryn Chaloner,et al.  Bayesian Experimental Design for Nonlinear Mixed‐Effects Models with Application to HIV Dynamics , 2004, Biometrics.

[32]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[33]  James M. McGree,et al.  Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data , 2013, Comput. Stat. Data Anal..

[34]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[35]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[36]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[37]  Anthony N. Pettitt,et al.  A Sequential Monte Carlo Algorithm to Incorporate Model Uncertainty in Bayesian Sequential Design , 2014 .

[38]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[39]  Anthony N. Pettitt,et al.  Fully Bayesian Experimental Design for Pharmacokinetic Studies , 2015, Entropy.

[40]  P. L’Ecuyer,et al.  Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo , 2010 .

[41]  W. Reiher Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .

[42]  H. D. Patterson,et al.  The efficiency of incomplete block designs in National List and Recommended List cereal variety trials , 1983, The Journal of Agricultural Science.

[43]  Eric Moulines,et al.  On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..

[44]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[45]  Christian P. Robert,et al.  Bayesian-Optimal Design via Interacting Particle Systems , 2006 .

[46]  K. Mengersen,et al.  Adaptive Bayesian compound designs for dose finding studies , 2012 .

[47]  Alain Mallet,et al.  Optimal design in random-effects regression models , 1997 .

[48]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[49]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[50]  Michael Bailey,et al.  Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome. , 2009, JAMA.

[51]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .