Statistical Complexity of Quantum Learning

Recent years have seen significant activity on the problem of using data for the purpose of learning properties of quantum systems or of processing classical or quantum data via quantum computing. As in classical learning, quantum learning problems involve settings in which the mechanism generating the data is unknown, and the main goal of a learning algorithm is to ensure satisfactory accuracy levels when only given access to data and, possibly, side information such as expert knowledge. This article reviews the complexity of quantum learning using information-theoretic techniques by focusing on data complexity, copy complexity, and model complexity. Copy complexity arises from the destructive nature of quantum measurements, which irreversibly alter the state to be processed, limiting the information that can be extracted about quantum data. For example, in a quantum system, unlike in classical machine learning, it is generally not possible to evaluate the training loss simultaneously on multiple hypotheses using the same quantum data. To make the paper self-contained and approachable by different research communities, we provide extensive background material on classical results from statistical learning theory, as well as on the distinguishability of quantum states. Throughout, we highlight the differences between quantum and classical learning by addressing both supervised and unsupervised learning, and we provide extensive pointers to the literature.

[1]  O. Simeone,et al.  Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning , 2023, ArXiv.

[2]  C. Gong,et al.  Conditional quantum circuit Born machine based on a hybrid quantum classical framework , 2023, Physica A: Statistical Mechanics and its Applications.

[3]  Min-Hsiu Hsieh,et al.  Demystify Problem-Dependent Power of Quantum Neural Networks on Multi-Class Classification , 2022, ArXiv.

[4]  L. Banchi Robust quantum classifiers via NISQ adversarial learning , 2022, Nature Computational Science.

[5]  J. Calsamiglia,et al.  Universal algorithms for quantum data learning , 2022, Europhysics Letters.

[6]  Patrick J. Coles,et al.  Representation Theory for Geometric Quantum Machine Learning , 2022, ArXiv.

[7]  Patrick J. Coles,et al.  Quantum mixed state compiling , 2022, Quantum Science and Technology.

[8]  R. Santagati,et al.  Learning quantum systems , 2022, Nature Reviews Physics.

[9]  Stefan M. Wild,et al.  Bandwidth Enables Generalization in Quantum Kernel Models , 2022, ArXiv.

[10]  O. Simeone An Introduction to Quantum Machine Learning for Engineers , 2022, Found. Trends Signal Process..

[11]  Daniel Stilck Francca,et al.  Limitations of Variational Quantum Algorithms: A Quantum Optimal Transport Approach , 2022, PRX Quantum.

[12]  D. Deng,et al.  Experimental quantum adversarial learning with programmable superconducting qubits , 2022, Nature Computational Science.

[13]  Sharu Theresa Jose,et al.  Transfer Learning for Quantum Classifiers: An Information-Theoretic Generalization Analysis , 2022, 2023 IEEE Information Theory Workshop (ITW).

[14]  Jordan S. Cotler,et al.  Quantum advantage in learning from experiments , 2021, Science.

[15]  Patrick J. Coles,et al.  Generalization in quantum machine learning from few training data , 2021, Nature Communications.

[16]  Patrick J. Coles,et al.  Theory of overparametrization in quantum neural networks , 2021, Nature Computational Science.

[17]  R. McClarren Machine Learning for Engineers , 2021 .

[18]  L. Banchi,et al.  Quantum Noise Sensing by Generating Fake Noise , 2021, Physical Review Applied.

[19]  Matthias C. Caro,et al.  Encoding-dependent generalization bounds for parametrized quantum circuits , 2021, Quantum.

[20]  Dyon van Vreumingen,et al.  Structural risk minimization for quantum linear classifiers , 2021, Quantum.

[21]  D. Tao,et al.  Efficient Measure for the Expressivity of Variational Quantum Algorithms. , 2021, Physical review letters.

[22]  Andrea Montanari,et al.  Deep learning: a statistical viewpoint , 2021, Acta Numerica.

[23]  Miguel C. Soriano,et al.  Opportunities in Quantum Reservoir Computing and Extreme Learning Machines , 2021, Advanced Quantum Technologies.

[24]  M. Kim,et al.  Capacity and quantum geometry of parametrized quantum circuits , 2021, PRX Quantum.

[25]  Maria Schuld,et al.  Quantum machine learning models are kernel methods , 2021, 2101.11020.

[26]  John Preskill,et al.  Information-theoretic bounds on quantum advantage in machine learning , 2021, Physical review letters.

[27]  Andrew J. P. Garner,et al.  Extreme Dimensionality Reduction with Quantum Modeling. , 2020, Physical review letters.

[28]  Filippo Caruso,et al.  How to enhance quantum generative adversarial learning of noisy information , 2020, New Journal of Physics.

[29]  H. Neven,et al.  Power of data in quantum machine learning , 2020, Nature Communications.

[30]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[31]  Stefano Pirandola,et al.  Quantum-enhanced barcode decoding and pattern recognition , 2020, ArXiv.

[32]  Seth Lloyd,et al.  The Quantum Wasserstein Distance of Order 1 , 2020, IEEE Transactions on Information Theory.

[33]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[34]  Stefano Pirandola,et al.  Ultimate Limits for Multiple Quantum Channel Discrimination. , 2020, Physical review letters.

[35]  S. Lloyd,et al.  Quantum algorithm for Petz recovery channels and pretty good measurements , 2020, Physical review letters.

[36]  Aryeh Kontorovich,et al.  Learning discrete distributions with infinite support , 2020, NeurIPS.

[37]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[38]  S. Lloyd,et al.  Quantum embeddings for machine learning , 2020, 2001.03622.

[39]  Shouvanik Chakrabarti,et al.  Quantum Wasserstein Generative Adversarial Networks , 2019, NeurIPS.

[40]  A. Montanaro Pretty simple bounds on quantum state discrimination , 2019, 1908.08312.

[41]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[42]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[43]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[44]  Alan Aspuru-Guzik,et al.  Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions , 2019, Advanced Quantum Technologies.

[45]  Christoph Becker,et al.  Identifying quantum phase transitions using artificial neural networks on experimental data , 2018, Nature Physics.

[46]  Yu Bai,et al.  Approximability of Discriminators Implies Diversity in GANs , 2018, ICLR.

[47]  Arthur Jacot,et al.  Neural Tangent Kernel: Convergence and Generalization in Neural Networks , 2018, NeurIPS.

[48]  Frank Pollmann,et al.  Machine learning of quantum phase transitions , 2018, Physical Review B.

[49]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[50]  Andrea Mari,et al.  Optimal Universal Learning Machines for Quantum State Discrimination , 2018, IEEE Transactions on Information Theory.

[51]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[52]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[53]  O. Shamir,et al.  Size-Independent Sample Complexity of Neural Networks , 2017, COLT.

[54]  Tao Xu,et al.  On the Discrimination-Generalization Tradeoff in GANs , 2017, ICLR.

[55]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[57]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[58]  Peter Wittek,et al.  Inductive Supervised Quantum Learning. , 2017, Physical review letters.

[59]  Yingyu Liang,et al.  Generalization and Equilibrium in Generative Adversarial Nets (GANs) , 2017, ICML.

[60]  Cristian Romero García,et al.  Quantum Machine Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[61]  Maris Ozols,et al.  Hamiltonian simulation with optimal sample complexity , 2016, npj Quantum Information.

[62]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[63]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[64]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[65]  Gerardo Adesso,et al.  Quantum learning of coherent states , 2014, 1410.8700.

[66]  Yazhen Wang,et al.  Quantum Computation and Quantum Information , 2012, 1210.0736.

[67]  Marco Lanzagorta,et al.  Quantum Radar , 2011, Quantum Radar.

[68]  E. Bagan,et al.  Quantum learning without quantum memory , 2011, Scientific Reports.

[69]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[70]  A. Winter,et al.  Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.

[71]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[72]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[73]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[74]  J. Bergou,et al.  Programmable unknown quantum-state discriminators with multiple copies of program and data: A Jordan-basis approach , 2006, quant-ph/0610226.

[75]  Lorenzo Maccone,et al.  Entropic information-disturbance tradeoff , 2006, quant-ph/0604038.

[76]  Robert D. Nowak,et al.  Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..

[77]  A. Hayashi,et al.  Quantum pure-state identification , 2005, quant-ph/0507237.

[78]  E. Bagan,et al.  Multiple-copy two-state discrimination with individual measurements , 2004, quant-ph/0410097.

[79]  Ran El-Yaniv,et al.  Explicit Learning Curves for Transduction and Application to Clustering and Compression Algorithms , 2004, J. Artif. Intell. Res..

[80]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[81]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[82]  T. Vojta Quantum phase transitions , 2000, cond-mat/0309604.

[83]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[84]  R. Raz Exponential separation of quantum and classical communication complexity , 1999, Symposium on the Theory of Computing.

[85]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[86]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[87]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[88]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[89]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[90]  Dacheng Tao,et al.  Theory of Quantum Generative Learning Models with Maximum Mean Discrepancy , 2022, ArXiv.

[91]  Alejandro Perdomo-Ortiz,et al.  Evaluating Generalization in Classical and Quantum Generative Models , 2022, ArXiv.

[92]  An Introduction To Signal Detection And Estimation Springer Texts In Electrical Engineering , 2021 .

[93]  S. Shalev-Shwartz,et al.  Understanding Machine Learning - From Theory to Algorithms , 2014 .

[94]  Eric P. Xing,et al.  Information Theory , 2019, Nature.

[95]  J. Wissel,et al.  On the Best Constants in the Khintchine Inequality , 2007 .

[96]  W. Gasarch,et al.  The Book Review Column 1 Coverage Untyped Systems Simple Types Recursive Types Higher-order Systems General Impression 3 Organization, and Contents of the Book , 2022 .

[97]  H. Poor An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[98]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[99]  C. Helstrom Quantum detection and estimation theory , 1969 .