Self-assembly of three-dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization.
暂无分享,去创建一个
Hui Wang | Zhan-Ting Li | Dan‐Wei Zhang | Xin Zhao | Kang‐Da Zhang | Yi Liu | Jia Tian | Tian-You Zhou | Yunshuang Ding | T. Zhou | Zhanting Li
[1] Xi Zhang,et al. Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination. , 2013, Chemical communications.
[2] Michael T. Colvin,et al. Tetrathiafulvalene hetero radical cation dimerization in a redox-active [2]catenane. , 2012, Journal of the American Chemical Society.
[3] C. Hawker,et al. Phase separation of supramolecular and dynamic block copolymers , 2012 .
[4] F. D’Souza,et al. Supramolecular electron transfer by anion binding. , 2012, Chemical communications.
[5] Leyong Wang,et al. Advanced supramolecular polymers constructed by orthogonal self-assembly. , 2012, Chemical Society reviews.
[6] Xi Zhang,et al. Characterization of supramolecular polymers. , 2012, Chemical Society reviews.
[7] Yu Liu,et al. Calixarene-based supramolecular polymerization in solution. , 2012, Chemical Society reviews.
[8] Bo Zheng,et al. Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.
[9] O. Scherman,et al. Supramolecular polymeric hydrogels. , 2012, Chemical Society reviews.
[10] J. O. Jeppesen,et al. Synthesis and recognition properties of higher order tetrathiafulvalene (TTF) calix[n]pyrroles (n = 4–6) , 2012 .
[11] J. Novoa,et al. The nature of the [TTF]˙+···[TTF]˙+ interactions in the [TTF]2(2+) dimers embedded in charged [3]catenanes: room-temperature multicenter long bonds. , 2012, Chemistry.
[12] Dong-Sheng Guo,et al. Cucurbituril-modulated supramolecular assemblies: from cyclic oligomers to linear polymers. , 2012, Chemistry.
[13] J. O. Jeppesen,et al. Quantification of the π-π interactions that govern tertiary structure in donor-acceptor [2]pseudorotaxanes. , 2012, Journal of the American Chemical Society.
[14] E. W. Meijer,et al. Functional Supramolecular Polymers , 2012, Science.
[15] F. G. Brunetti,et al. π-Extended TTF: a versatile molecule for organic electronics , 2012 .
[16] Bo Zheng,et al. Supramolecular polymers constructed by crown ether-based molecular recognition. , 2012, Chemical Society reviews.
[17] Gérard Férey,et al. Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.
[18] Hong-Cai Zhou,et al. Metal-organic frameworks for separations. , 2012, Chemical reviews.
[19] Kenji Sumida,et al. Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.
[20] Yanfeng Yue,et al. Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.
[21] Seth M Cohen,et al. Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.
[22] Kimoon Kim,et al. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.
[23] M. Iyoda,et al. Face-to-Face Dimeric Tetrathiafulvalenes and Their Cation Radical and Dication Species as Models of Mixed Valence and π-Dimer States , 2012 .
[24] E. Ortí,et al. Bowl-shape electron donors with absorptions in the visible range of the solar spectrum and their supramolecular assemblies with C60 , 2012 .
[25] C. M. Davis,et al. Palladium induced macrocyclic preorganization for stabilization of a tetrathiafulvalene mixed-valence dimer. , 2011, Organic letters.
[26] Leyong Wang,et al. New light on the ring-chain equilibrium of a hydrogen-bonded supramolecular polymer based on a photochromic dithienylethene unit and its energy-transfer properties as a storage material. , 2011, Chemistry.
[27] M. Iyoda,et al. Star-shaped pyrrole-fused tetrathiafulvalene oligomers: synthesis and redox, self-assembling, and conductive properties. , 2011, Organic letters.
[28] Douglas C. Friedman,et al. Mechanically stabilized tetrathiafulvalene radical dimers. , 2011, Journal of the American Chemical Society.
[29] D. Canevet,et al. Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. , 2011, Journal of the American Chemical Society.
[30] A. Schenning,et al. Hydrogen-bonded Supramolecular π-Functional Materials† , 2011 .
[31] A. Cooper. Nanoporous organics enter the cage age. , 2011, Angewandte Chemie.
[32] Andrew I. Cooper. Nanoporöse organische Festkörper im Zeichen des Käfigs , 2011 .
[33] Douglas C. Friedman,et al. A multistate switchable [3]rotacatenane. , 2011, Chemistry.
[34] Arne Thomas. Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.
[35] Arne Thomas. Funktionsmaterialien: von harten zu weichen porösen Netzwerken , 2010 .
[36] J. Park,et al. Tetrathiafulvalene diindolylquinoxaline: a dual signaling anion receptor with phosphate selectivity. , 2010, Chemical communications.
[37] Douglas C. Friedman,et al. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. , 2010, Nature chemistry.
[38] K. Ohkubo,et al. Ion-Mediated Electron Transfer in a Supramolecular Donor-Acceptor Ensemble , 2010, Science.
[39] J. O. Jeppesen,et al. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray. , 2010, Journal of the American Chemical Society.
[40] Freek Kapteijn,et al. Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.
[41] J. Gascon,et al. Metall‐organische Membranen: hohes Potenzial, große Zukunft? , 2010 .
[42] J. O. Jeppesen,et al. Positive homotropic allosteric receptors for neutral guests: annulated tetrathiafulvalene-calix[4]pyrroles as colorimetric chemosensors for nitroaromatic explosives. , 2010, Chemistry.
[43] S. Rowan,et al. Supramolecular Polymerizations and Main-Chain Supramolecular Polymers , 2009 .
[44] Philip Kim,et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses , 2009, Nature.
[45] Deqing Zhang,et al. A new tetrathiafulvalene-quinone-tetrathiafulvalene triad: modulation of the intramolecular charge transfer by the electron-transfer process promoted by metal ions. , 2009, The Journal of organic chemistry.
[46] U. Schubert,et al. Toward main chain metallo-terpyridyl supramolecular polymers: "the metal does the trick". , 2009, Macromolecular rapid communications.
[47] Deqing Zhang,et al. Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. , 2009, Chemical communications.
[48] S. Craig. From ionic liquids to supramolecular polymers. , 2009, Angewandte Chemie.
[49] Stephen L. Craig. Von ionischen Flüssigkeiten zu supramolekularen Polymeren , 2009 .
[50] Akira Harada,et al. Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.
[51] E. W. Meijer,et al. Preparation and characterization of helical self-assembled nanofibers. , 2009, Chemical Society reviews.
[52] Pinn-Tsong Chiang,et al. Direct observation of mixed-valence and radical cation dimer states of tetrathiafulvalene in solution at room temperature: association and dissociation of molecular clip dimers under oxidative control. , 2008, Chemistry.
[53] Yu-Fei Song,et al. Postsynthetische kovalente Modifizierung von metall-organischen Gerüsten (MOFs) , 2008 .
[54] L. Cronin,et al. Postsynthetic covalent modification of metal-organic framework (MOF) materials. , 2008, Angewandte Chemie.
[55] Oren A Scherman,et al. Supramolecular block copolymers with cucurbit[8]uril in water. , 2008, Angewandte Chemie.
[56] Urs Rauwald,et al. Supramolekulare Blockcopolymere mit Cucurbit[8]uril in Wasser , 2008 .
[57] J. F. Stoddart,et al. Tetrathiafulvalene radical cation dimerization in a bistable tripodal [4]rotaxane. , 2008, Chemistry.
[58] M. Mastalerz. The next generation of shape-persistant zeolite analogues: covalent organic frameworks. , 2008, Angewandte Chemie.
[59] Michael Mastalerz. Die nächste Generation formstabiler Zeolith‐Analoga: kovalent gebundene organische Netzwerkverbindungen , 2008 .
[60] J. Veciana,et al. Synthesis and doping of a multifunctional tetrathiafulvalene-substituted poly(isocyanide) , 2007 .
[61] D. Guldi,et al. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? , 2007, Accounts of chemical research.
[62] N. Avarvari,et al. Intramolecular mixed-valence state through silicon or germanium double bridges in rigid bis(tetrathiafulvalenes). , 2007, Chemistry.
[63] Hui-Fang Wu,et al. Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads: facilitated by metal ion and photomodulation in the presence of spiropyran. , 2007, Journal of the American Chemical Society.
[64] M. Weck. Side‐chain functionalized supramolecular polymers , 2007 .
[65] Eunju Kim,et al. Supramolecular assemblies built with host-stabilized charge-transfer interactions. , 2007, Chemical communications.
[66] Wencai Lu,et al. Tetrathiafulvalene-Diamide Salts with SS and CC Stacked Radical Couples , 2007 .
[67] M. Serpe,et al. Physical organic chemistry of supramolecular polymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.
[68] Y. Miyahara,et al. Stable immobilization of an oligonucleotide probe on a gold substrate using tripodal thiol derivatives. , 2007, Langmuir : the ACS journal of surfaces and colloids.
[69] J. Kochi,et al. Molecular and electronic structures of the long-bonded pi-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity. , 2007, Journal of the American Chemical Society.
[70] M. Sallé,et al. Monitoring the formation of TTF dimers by Na+ complexation. , 2006, Chemical communications.
[71] Amar H Flood,et al. Locking down the electronic structure of (monopyrrolo)tetrathiafulvalene in [2]rotaxanes. , 2006, Organic letters.
[72] M. Fujita,et al. Room-temperature and solution-state observation of the mixed-valence cation radical dimer of tetrathiafulvalene, [(TTF)2]+*, within a self-assembled cage. , 2005, Journal of the American Chemical Society.
[73] Daoben Zhu,et al. Tetrathiafulvalene Derivatives Recognition of Copper with High Selectivity , 2005 .
[74] U. Schubert,et al. Combination of orthogonal supramolecular interactions in polymeric architectures. , 2005, Chemical communications.
[75] M. Meneghetti,et al. Excited state two photon absorption of a charge transfer radical dimer in the near infrared. , 2005, The journal of physical chemistry. A.
[76] Fred Wudl,et al. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. , 2004, Chemical reviews.
[77] T. Inabe,et al. A Helical π‐Radical‐Cation Column in the Double Helix of Mellitate Anions , 2004 .
[78] Y. Ko,et al. Stable pi-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. , 2004, Chemical communications.
[79] Kimoon Kim,et al. Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand. , 2004, Angewandte Chemie.
[80] Deqing Zhang,et al. Donor-acceptor-donor triads incorporating tetrathiafulvalene and perylene diimide units: synthesis, electrochemical and spectroscopic studies , 2003 .
[81] Jean-Marie Lehn,et al. Supramolecular polymer chemistry—scope and perspectives†‡ , 2002 .
[82] U. Schubert,et al. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. , 2002, Angewandte Chemie.
[83] U. Schubert,et al. Makromoleküle mit Bipyridin- und Terpyridinkomplexen als Verknüpfungsstellen: erste Schritte auf dem Weg zu metallo-supramolekularen Polymeren , 2002 .
[84] T. Müller,et al. Convenient Syntheses of Tetraarylmethane Starting Materials , 2002 .
[85] A. Gorgues,et al. Do π-dimers of tetrathiafulvalene cation radicals really exist at room temperature? , 2001 .
[86] T. Reineke,et al. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. , 2001, Journal of the American Chemical Society.
[87] José L. Segura,et al. New Concepts in Tetrathiafulvalene Chemistry. , 2001, Angewandte Chemie.
[88] José L. Segura,et al. Neue Konzepte in der Tetrathiafulvalenchemie , 2001 .
[89] E. Levillain,et al. Multiple-Bridged Bis-Tetrathiafulvalenes: New Synthetic Protocols and Spectroelectrochemical Investigations , 2000 .
[90] D. Hellwinkel,et al. Phenylvinylog erweiterte Triphenylmethylium-Systeme , 1989 .
[91] P. Seiden,et al. Optical properties of the radical cation tetrathiafulvalenium (TTF+) in its mixed-valence and monovalence halide salts. , 1979 .
[92] M. Weck,et al. Main-chain supramolecular block copolymers. , 2011, Chemical Society reviews.
[93] P. Frère,et al. Effect of heteroaromatic spacers on the structure and electrical properties of cation radical salts of tetrathiafulvalene analogs , 1998 .
[94] L. Goldenberg,et al. Synthesis and electrochemistry of a tetrathiafulvalene (TTF) 21 –glycol dendrimer: intradendrimer aggregation of TTF cation radicals , 1998 .