An approximation algorithm for counting contingency tables
暂无分享,去创建一个
Alex Samorodnitsky | Alexander Barvinok | Zur Luria | Alexander Yong | A. Barvinok | Zur Luria | Alex Samorodnitsky | A. Yong
[1] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[2] Martin E. Dyer,et al. A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant , 2002, STOC '02.
[3] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[4] Nicholas G. Polson,et al. Sampling from log-concave distributions , 1994 .
[5] Brendan D. McKay,et al. Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums , 2008, Adv. Appl. Math..
[6] S. Vempala. Geometric Random Walks: a Survey , 2007 .
[7] Leonid Gurvits,et al. Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.
[8] Shmuel Friedland,et al. A lower bound for the permanent of a doubly stochastic matrix , 1979 .
[9] Leonid Gurvits,et al. Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all , 2007, Electron. J. Comb..
[10] P. Diaconis,et al. Testing for independence in a two-way table , 1985 .
[11] L. Khachiyan,et al. ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .
[12] Alexander I. Barvinok. Enumerating Contingency Tables via Random Permanents , 2008, Comb. Probab. Comput..
[13] I. Good. On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .
[14] Alex Samorodnitsky,et al. A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..
[15] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[16] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[17] Leonid Gurvits. The Van der Waerden conjecture for mixed discriminants , 2004 .
[18] Martin E. Dyer,et al. Sampling contingency tables , 1997 .
[19] Yuguo Chen,et al. Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .
[20] Edward A. Bender,et al. The asymptotic number of non-negative integer matrices with given row and column sums , 1974, Discret. Math..
[21] Ben Morris. Improved bounds for sampling contingency tables , 2002, Random Struct. Algorithms.
[22] Jesús A. De Loera,et al. Counting Integer Flows in Networks , 2003, Found. Comput. Math..
[23] Santosh S. Vempala,et al. Sampling lattice points , 1997, STOC '97.
[24] Alexander Barvinok,et al. Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes , 2007, 0709.3810.
[25] Martin E. Dyer,et al. Rapidly Mixing Markov Chains for Sampling Contingency Tables with a Constant Number of Rows , 2006, SIAM J. Comput..
[26] T. Raghavan,et al. Nonnegative Matrices and Applications , 1997 .
[27] David Applegate,et al. Sampling and integration of near log-concave functions , 1991, STOC '91.
[28] Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .
[29] G. Egorychev. The solution of van der Waerden's problem for permanents , 1981 .
[30] I. Olkin,et al. Scaling of matrices to achieve specified row and column sums , 1968 .
[31] A. Barvinok. Brunn–Minkowski inequalities for contingency tables and integer flows , 2006, math/0603655.
[32] George W. Soules. New permanental upper bounds for nonnegative matrices , 2003 .
[33] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[34] A. Frieze,et al. Log-Sobolev inequalities and sampling from log-concave distributions , 1999 .