An approximation algorithm for counting contingency tables

We present a randomized approximation algorithm for counting contingency tables, m × n non-negative integer matrices with given row sums R = (r1,…,rm) and column sums C = (c1,…,cn). We define smooth margins (R,C) in terms of the typical table and prove that for such margins the algorithm has quasi-polynomial NO(ln N) complexity, where N = r1 + … + rm = c1 + … + cn. Various classes of margins are smooth, e.g., when m = O(n), n = O(m) and the ratios between the largest and the smallest row sums as well as between the largest and the smallest column sums are strictly smaller than the golden ratio (1 + $ {\sqrt{5}} $)-2 ≈ 1.618. The algorithm builds on Monte Carlo integration and sampling algorithms for log-concave densities, the matrix scaling algorithm, the permanent approximation algorithm, and an integral representation for the number of contingency tables. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010

[1]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[2]  Martin E. Dyer,et al.  A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant , 2002, STOC '02.

[3]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[4]  Nicholas G. Polson,et al.  Sampling from log-concave distributions , 1994 .

[5]  Brendan D. McKay,et al.  Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums , 2008, Adv. Appl. Math..

[6]  S. Vempala Geometric Random Walks: a Survey , 2007 .

[7]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[8]  Shmuel Friedland,et al.  A lower bound for the permanent of a doubly stochastic matrix , 1979 .

[9]  Leonid Gurvits,et al.  Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all , 2007, Electron. J. Comb..

[10]  P. Diaconis,et al.  Testing for independence in a two-way table , 1985 .

[11]  L. Khachiyan,et al.  ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .

[12]  Alexander I. Barvinok Enumerating Contingency Tables via Random Permanents , 2008, Comb. Probab. Comput..

[13]  I. Good On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .

[14]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..

[15]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[16]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[17]  Leonid Gurvits The Van der Waerden conjecture for mixed discriminants , 2004 .

[18]  Martin E. Dyer,et al.  Sampling contingency tables , 1997 .

[19]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[20]  Edward A. Bender,et al.  The asymptotic number of non-negative integer matrices with given row and column sums , 1974, Discret. Math..

[21]  Ben Morris Improved bounds for sampling contingency tables , 2002, Random Struct. Algorithms.

[22]  Jesús A. De Loera,et al.  Counting Integer Flows in Networks , 2003, Found. Comput. Math..

[23]  Santosh S. Vempala,et al.  Sampling lattice points , 1997, STOC '97.

[24]  Alexander Barvinok,et al.  Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes , 2007, 0709.3810.

[25]  Martin E. Dyer,et al.  Rapidly Mixing Markov Chains for Sampling Contingency Tables with a Constant Number of Rows , 2006, SIAM J. Comput..

[26]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[27]  David Applegate,et al.  Sampling and integration of near log-concave functions , 1991, STOC '91.

[28]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[29]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[30]  I. Olkin,et al.  Scaling of matrices to achieve specified row and column sums , 1968 .

[31]  A. Barvinok Brunn–Minkowski inequalities for contingency tables and integer flows , 2006, math/0603655.

[32]  George W. Soules New permanental upper bounds for nonnegative matrices , 2003 .

[33]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[34]  A. Frieze,et al.  Log-Sobolev inequalities and sampling from log-concave distributions , 1999 .