The basics of developing numerical algorithms

In this article, we surveyed several numerical methods arising in systems and control and pointed out general principles that lead to numerically reliable algorithms for solving a large range of problems in this area. Algorithms that use orthogonal or unitary transformation were emphasized because they often lead to reliable numerical algorithms. We focused on those problems for which good algorithms are available. It is crucial to have robust numerical software available to implement these ideas, and the NICONET project aims at providing exactly that. Moreover, the underlying software library SLICOT is freely available for noncommercial use.

[1]  A. Laub,et al.  On the numerical solution of the discrete-time algebraic Riccati equation , 1980 .

[2]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[3]  James Demmel,et al.  Accurate solutions of ill-posed problems in control theory , 1988 .

[4]  N.J. Higham,et al.  The sensitivity of computational control problems , 2004, IEEE Control Systems.

[5]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[6]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[7]  V. Sima,et al.  High-performance numerical software for control , 2004, IEEE Control Systems.

[8]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[9]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[10]  E. M. Wright Solution of the equation $ze^z = a$ , 1959 .

[11]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[12]  A. Laub,et al.  Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  S. Bittanti,et al.  The difference periodic Ricati equation for the periodic prediction problem , 1988 .

[15]  A. Varga Periodic Lyapunov equations: Some applications and new algorithms , 1997 .

[16]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[17]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[18]  George Miminis,et al.  A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback , 1988, Autom..

[19]  Vladimír Kucera,et al.  Discrete linear control: The polynomial equation approach , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[22]  Paul Van Dooren,et al.  Structured linear algebra problems in digital signal processing , 1991 .

[23]  Adam W. Bojanczyk,et al.  Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.

[24]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[25]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[26]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[27]  Paul Van Dooren,et al.  Computational methods for periodic systems - An overview , 2001 .

[28]  Paul Van Dooren,et al.  Periodic descriptor systems: solvability and conditionability , 1999, IEEE Trans. Autom. Control..

[29]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[30]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[31]  Zdenek Vostrý New algorithm for polynomial spectral factorization with quadratic convergence. II , 1975, Kybernetika.

[32]  A. Varga A Schur method for pole assignment , 1981 .

[33]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[34]  G. Stewart,et al.  An Algorithm for Computing Reducing Subspaces by Block Diagonalization. , 1979 .

[35]  W. Gragg,et al.  On the partial realization problem , 1983 .

[36]  Adhemar Bultheel,et al.  Error analysis of incoming and outgoing schemes for the trigonometric moment problem , 1981 .