Structural Basis for Relief of Autoinhibition of the Dbl Homology Domain of Proto-Oncogene Vav by Tyrosine Phosphorylation

[1]  Yi Zheng,et al.  Identification of Rho GTPase-dependent Sites in the Dbl Homology Domain of Oncogenic Dbl That Are Required for Transformation* , 2000, The Journal of Biological Chemistry.

[2]  D Broek,et al.  Control of Intramolecular Interactions between the Pleckstrin Homology and Dbl Homology Domains of Vav and Sos1 Regulates Rac Binding* , 2000, The Journal of Biological Chemistry.

[3]  G L Johnson,et al.  Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Tan,et al.  The c-Jun N-terminal kinase pathway and apoptotic signaling (review). , 2000, International journal of oncology.

[5]  X. Bustelo,et al.  Tyrosine Phosphorylation Mediates Both Activation and Downmodulation of the Biological Activity of Vav , 2000, Molecular and Cellular Biology.

[6]  Y. Kaziro,et al.  Induction of Rac-Guanine Nucleotide Exchange Activity of Ras-GRF1/CDC25Mm following Phosphorylation by the Nonreceptor Tyrosine Kinase Src* , 2000, The Journal of Biological Chemistry.

[7]  C. Der,et al.  Involvement of NH2-terminal Sequences in the Negative Regulation of Vav Signaling and Transforming Activity* , 1999, The Journal of Biological Chemistry.

[8]  C. Downes,et al.  Ca2+/Calmodulin-dependent Protein Kinase II Regulates Tiam1 by Reversible Protein Phosphorylation* , 1999, The Journal of Biological Chemistry.

[9]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[10]  T. Pawson,et al.  Structure and mutagenesis of the Dbl homology domain , 1998, Nature Structural Biology.

[11]  K. Schuebel,et al.  Phosphorylation‐dependent and constitutive activation of Rho proteins by wild‐type and oncogenic Vav‐2 , 1998, The EMBO journal.

[12]  Hong Wang,et al.  NMR Structure and Mutagenesis of the N-Terminal Dbl Homology Domain of the Nucleotide Exchange Factor Trio , 1998, Cell.

[13]  D. Bar-Sagi,et al.  Crystal Structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein , 1998, Cell.

[14]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[15]  K. Tedford,et al.  Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor , 1998, Current Biology.

[16]  F. Alt,et al.  Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction , 1998, Current Biology.

[17]  L. Kay,et al.  Significantly improved resolution for noe correlations from valine and isoleucine (C(y)2) methyl groups in 15N, 13C- and 15N, 13C, 2H-labeled proteins , 1998 .

[18]  H. R. Crollius,et al.  Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation , 1998, Nature.

[19]  M. White,et al.  Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. , 1998, Science.

[20]  Lewis E. Kay,et al.  Production and Incorporation of 15N, 13C, 2H (1H-δ1 Methyl) Isoleucine into Proteins for Multidimensional NMR Studies , 1997 .

[21]  H Oschkinat,et al.  Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. , 1997, Journal of molecular biology.

[22]  C. Der,et al.  Lck regulates Vav activation of members of the Rho family of GTPases , 1997, Molecular and cellular biology.

[23]  K. Schuebel,et al.  Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product , 1997, Nature.

[24]  C. Vinson,et al.  Phosphorylation destabilizes α-helices , 1997, Nature Structural Biology.

[25]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[26]  T. Mustelin,et al.  Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. , 1996, Immunity.

[27]  L. Kay,et al.  An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C-labeled proteins , 1996, Journal of biomolecular NMR.

[28]  M. Barbacid,et al.  Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. , 1996, Oncogene.

[29]  E. Kupče,et al.  Use of selective C alpha pulses for improvement of HN(CA)CO-D and HN(COCA)NH-D experiments. , 1996, Journal of magnetic resonance. Series B.

[30]  R. Cerione,et al.  Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence. , 1996, Biochemistry.

[31]  Y. Zheng,et al.  The Dbl family of oncogenes. , 1996, Current opinion in cell biology.

[32]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[33]  A. Brunati,et al.  Site specificity of p72 syk protein tyrosine kinase: efficient phosphorylation of motifs recognized by Src homology 2 domains of the Src family , 1995, FEBS letters.

[34]  John G. Collard,et al.  A role for Rac in Tiaml-induced membrane ruffling and invasion , 1995, Nature.

[35]  F. McCormick,et al.  An essential role for Rac in Ras transformation , 1995, Nature.

[36]  M. Barbacid,et al.  Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CDS+thymocytes , 1995, Nature.

[37]  K. Rajewsky,et al.  Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav , 1995, Nature.

[38]  F. Alt,et al.  Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene , 1995, Nature.

[39]  R. Stevenson,et al.  Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: A putative Rho Rac guanine nucleotide exchange factor , 1994, Cell.

[40]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[41]  L. Kay,et al.  Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation , 1994 .

[42]  L. Kay,et al.  Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity , 1994 .

[43]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[44]  Mark S. Boguski,et al.  Proteins regulating Ras and its relatives , 1993, Nature.

[45]  L. Kay,et al.  A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins , 1993 .

[46]  T. Pawson,et al.  SH2 domains recognize specific phosphopeptide sequences , 1993, Cell.

[47]  T. Logan,et al.  A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments , 1993, Journal of biomolecular NMR.

[48]  M. Barbacid,et al.  Tyrosine Phosphorylation of the vav Proto-Oncogene Product in Activated B Cells , 1992, Science.

[49]  M. Barbacid,et al.  Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates , 1992, Nature.

[50]  A. Ullrich,et al.  Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs , 1992, Nature.

[51]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[52]  M. Carson RIBBONS 2.0 , 1991 .

[53]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[54]  A M Gronenborn,et al.  Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. , 1990, Science.

[55]  K. Wüthrich,et al.  Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. , 1989, Biochemistry.

[56]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[57]  Zhenbiao Yang,et al.  RHO Gtpases and the Actin Cytoskeleton , 2000 .

[58]  Sheila M. Thomas,et al.  Cellular functions regulated by Src family kinases. , 1997, Annual review of cell and developmental biology.

[59]  X. Bustelo,et al.  The VAV family of signal transduction molecules. , 1996, Critical reviews in oncogenesis.

[60]  J. Downward,et al.  Control of ras activation. , 1996, Cancer surveys.

[61]  J. Marsh,et al.  The GTPase superfamily , 1993 .