One-level reformulation of the bilevel Knapsack problem using dynamic programming

In this paper, we consider the Bilevel Knapsack Problem (BKP), which is a hierarchical optimization problem in which the feasible set is determined by the set of optimal solutions for a parametric Knapsack Problem. We introduce a new reformulation of the BKP into a one-level integer programming problem using dynamic programming. We propose an algorithm that allows the BKP to be solved exactly in two steps. In the first step, a dynamic programming algorithm is used to compute the set of follower reactions to leader decisions. In the second step, an integer problem that is equivalent to the BKP is solved using a branch-and-bound algorithm. Numerical results are presented to show the performance of our method.

[1]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[2]  Jacqueline Morgan,et al.  Weak via strong Stackelberg problem: New results , 1996, J. Glob. Optim..

[3]  Sanjay V. Rajopadhye,et al.  Unbounded knapsack problem: Dynamic programming revisited , 2000, Eur. J. Oper. Res..

[4]  Saïd Hanafi,et al.  A dynamic programming algorithm for the bilevel knapsack problem , 2009, Oper. Res. Lett..

[5]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[6]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[7]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[8]  Stephan Dempe,et al.  Bilevel Programming With Knapsack Constraints , 2000 .

[9]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[10]  J. Bard,et al.  An algorithm for the discrete bilevel programming problem , 1992 .

[11]  Stephan Dempe,et al.  On an algorithm solving two-level programming problems with nonunique lower level solutions , 1996, Comput. Optim. Appl..

[12]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[13]  Stephan Dempe,et al.  Discrete Bilevel Optimization Problems , 2001 .

[14]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[15]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[16]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[17]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[18]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .