Fragmentation of massive protostellar discs

We examine whether massive-star accretion discs are likely to fragment due to self-gravity. Rapid accretion and high angular momentum push these discs toward fragmentation, whereas viscous heating and the high protostellar luminosity stabilize them. We find that for a broad range of protostar masses and for reasonable accretion times, massive discs larger than ∼ 150 au are prone to fragmentation. We develop an analytical estimate for the angular momentum of accreted material, extending the analysis of Matzner & Levin to account for strongly turbulent initial conditions. In a core-collapse model, we predict that discs are marginally prone to fragmentation around stars of about 4-15 M ⊙ - even if we adopt conservative estimates of the discs' radii and tendency to fragment. More massive stars are progressively more likely to fragment, and there is a sharp drop in the stability of disc accretion at the very high accretion rates expected above 110 M ⊙ . Fragmentation may starve accretion in massive stars, especially above this limit, and is likely to create swarms of small, coplanar companions.

[1]  J. Buizer The Remarkable Mid-Infrared Jet of the Massive Young Stellar Object G35.20–0.74 , 2006, astro-ph/0603428.

[2]  C. McKee,et al.  Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.

[3]  M. Krumholz Radiation Feedback and Fragmentation in Massive Protostellar Cores , 2006, astro-ph/0603026.

[4]  M. Pinsonneault,et al.  Binaries Like to Be Twins: Implications for Doubly Degenerate Binaries, the Type Ia Supernova Rate, and Other Interacting Binaries , 2005, astro-ph/0511193.

[5]  G. Lodato,et al.  Investigating fragmentation conditions in self-gravitating accretion discs , 2005, astro-ph/0509413.

[6]  Qizhou Zhang,et al.  A disk of dust and molecular gas around a high-mass protostar , 2005, Nature.

[7]  J. Buizer,et al.  Investigating the Nature of the Dust Emission around Massive Protostar NGC 7538 IRS 1: Circumstellar Disk and Outflow? , 2005, astro-ph/0506474.

[8]  J. Bally,et al.  Nearby regions of massive star formation , 2005, Proceedings of the International Astronomical Union.

[9]  R. Neri,et al.  A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126+4104 , 2005 .

[10]  U. Rochester,et al.  Star-forming accretion flows and the low-luminosity nuclei of giant elliptical galaxies , 2004, astro-ph/0409413.

[11]  Yuri Levin,et al.  Protostellar Disks: Formation, Fragmentation, and the Brown Dwarf Desert , 2004, astro-ph/0408525.

[12]  R. Cesaroni Outflow, Infall, and Rotation in High-Mass Star Forming Regions , 2005 .

[13]  R. Klein,et al.  How Protostellar Outflows Help Massive Stars Form , 2004, astro-ph/0411526.

[14]  G. Garay,et al.  SIMBA survey of southern high-mass star forming regions. I. Physical parameters of the 1.2-mm/IRAS sources , 2004 .

[15]  Markus Nielbock,et al.  The formation of a massive protostar through the disk accretion of gas , 2004, Nature.

[16]  C. McKee,et al.  Accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE FORMATION OF THE FIRST STARS I. MASS INFALL RATES, ACCRETION DISK STRUCTURE AND PROTOSTELLAR EVOLUTION , 2003 .

[17]  J. Goodman,et al.  Supermassive Stars in Quasar Disks , 2003, astro-ph/0307361.

[18]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[19]  L. Olmi,et al.  High resolution observations of the hot core in G29.96-0.02 , 2003 .

[20]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[21]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[22]  J. Monnier,et al.  On the Interferometric Sizes of Young Stellar Objects , 2002, astro-ph/0207292.

[23]  R. Rafikov,et al.  Planet Migration and Gap Formation by Tidally Induced Shocks , 2001, astro-ph/0110540.

[24]  Qizhou Zhang,et al.  A Disk/Jet System toward the High-Mass Young Star in AFGL 5142 , 2001 .

[25]  M. Claussen,et al.  Evidence for a Solar System-Size Accretion Disk Around the Massive Protostar G192.16-3.82 , 2001, Science.

[26]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[27]  M. Morris,et al.  N-Body Simulations of Compact Young Clusters near the Galactic Center , 2000, astro-ph/0008441.

[28]  C. McKee,et al.  Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.

[29]  P. Bodenheimer,et al.  Turbulent Molecular Cloud Cores: Rotational Properties , 2000, astro-ph/0006010.

[30]  P. Ho,et al.  The Radio Supernebula in NGC 5253 , 2000, The Astrophysical journal.

[31]  E. Serabyn,et al.  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .

[32]  ApJ, in press , 1999 .

[33]  Gregory Laughlin,et al.  The Dynamics of Heavy Gaseous Disks , 1998 .

[34]  L. Hillenbrand,et al.  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[35]  C. Leitherer,et al.  The Structure of the Super-Star Clusters in NGC 1569 from Hubble Space Telescope WFPC2 Images , 1997 .

[36]  P. Cassen,et al.  Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment , 1997 .

[37]  R. Plume,et al.  Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers , 1996, astro-ph/9609061.

[38]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .

[39]  Zhanwen Han,et al.  Zero-age main-sequence radii and luminosities as analytic functions of mass and metallicity , 1996 .

[40]  L. Hartmann,et al.  The Embedded Young Stars in the Taurus-Auriga Molecular Cloud. II. Models for Scattered Light Images , 1993 .

[41]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[42]  L. Hartmann,et al.  Model scattering envelopes of young stellar objects. II - Infalling envelopes , 1993 .

[43]  G. Fuller,et al.  Density Structure and Star Formation in Dense Cores with Thermal and Nonthermal Motions , 1992 .

[44]  F. Palla,et al.  The evolution of intermediate-mass protostars. II: Influence of the accretion flow , 1992 .

[45]  S. Bergh,et al.  Diameters of Galactic globular clusters , 1991 .

[46]  Fred C. Adams,et al.  Sling amplification and eccentric gravitational instabilities in gaseous disks , 1990 .

[47]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[48]  M. Wolfire,et al.  Conditions for the formation of massive stars , 1987 .

[49]  R. Fleck Angular momentum in a turbulent interstellar medium , 1987 .

[50]  J. E. Pringle,et al.  Interacting binary stars , 1985 .

[51]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[52]  R. Chevalier The enviroments of T Tauri stars , 1982 .