Nonparametric Heterogeneity Testing For Massive Data
暂无分享,去创建一个
Han Liu | Guang Cheng | Junwei Lu | Han Liu | Junwei Lu | Guang Cheng
[1] Han Liu,et al. A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE HETEROGENEOUS DATA. , 2014, Annals of statistics.
[2] Song-xi Chen,et al. Anova For Longitudinal Data With Missing Values , 2010, 1211.2979.
[3] Christopher K. I. Williams,et al. Understanding Gaussian Process Regression Using the Equivalent Kernel , 2004, Deterministic and Statistical Methods in Machine Learning.
[4] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[5] Runze Li,et al. MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES. , 2012, Annals of statistics.
[6] John Shawe-Taylor,et al. Covering numbers for support vector machines , 1999, COLT '99.
[7] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[8] Jon A. Wellner,et al. Ratio Limit Theorems for Empirical Processes , 2003 .
[9] I. Krasikov. New bounds on the Hermite polynomials , 2004, math/0401310.
[10] M. Birman,et al. PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .
[11] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[12] Guang Cheng,et al. Joint asymptotics for semi-nonparametric regression models with partially linear structure , 2013, 1311.2628.
[13] Minge Xie,et al. A Split-and-Conquer Approach for Analysis of Extraordinarily Large Data , 2014 .
[14] Guang Cheng,et al. Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.
[15] Yuan Yao,et al. Mercer's Theorem, Feature Maps, and Smoothing , 2006, COLT.
[16] M. Kosorok. Introduction to Empirical Processes and Semiparametric Inference , 2008 .
[17] Xiangyu Wang,et al. Parallelizing MCMC with Random Partition Trees , 2015, NIPS.
[18] V. Koltchinskii,et al. Concentration inequalities and asymptotic results for ratio type empirical processes , 2006, math/0606788.
[19] Bernhard Schölkopf,et al. Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators , 1998 .
[20] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[21] Runze Li,et al. Statistical inference in massive data sets , 2012 .
[22] Peter F. de Jong,et al. A central limit theorem for generalized quadratic forms , 1987 .
[23] Winfried Stute,et al. Nonparametric comparison of regression functions , 2010, J. Multivar. Anal..
[24] Chong Gu. Smoothing Spline Anova Models , 2002 .
[25] Wensheng Guo. Inference in smoothing spline analysis of variance , 2002 .
[26] William M. Shyu,et al. Local Regression Models , 2017 .
[27] I. Pinelis. OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.
[28] Wenceslao González-Manteiga,et al. Testing for the equality of k regression curves , 2007 .
[29] Christopher K. I. Williams,et al. Gaussian regression and optimal finite dimensional linear models , 1997 .
[30] Holger Dette,et al. Nonparametric comparison of several regression functions: exact and asymptotic theory , 1998 .
[31] Martin J. Wainwright,et al. Divide and Conquer Kernel Ridge Regression , 2013, COLT.
[32] R. Tibshirani,et al. Varying‐Coefficient Models , 1993 .
[33] Jianqing Fan,et al. Distributed Estimation and Inference with Statistical Guarantees , 2015, 1509.05457.
[34] John D. Lafferty,et al. Diffusion Kernels on Statistical Manifolds , 2005, J. Mach. Learn. Res..
[35] Qiang Liu,et al. Communication-efficient sparse regression: a one-shot approach , 2015, ArXiv.
[36] Purnamrita Sarkar,et al. A scalable bootstrap for massive data , 2011, 1112.5016.
[37] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[38] Hans Triebel,et al. Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces , 1980 .