Pathophysiology of myasthenia gravis.

Myasthenia gravis (MG) is arguably the best understood autoimmune disease, and its study has also led to fundamental appreciation of mechanisms of neuromuscular transmission. MG is caused by antibodies against the acetylcholine receptor (AChR), which produce a compromise in the end-plate potential, reducing the safety factor for effective synaptic transmission. It is clear that AChR antibody destruction of the postsynaptic surface is dependent on complement activation. A muscle-specific kinase has been recently found to be an antigenic target in MG patients without antibodies against the AChR. Autoantibody production in MG is a T-cell-dependent process, but how a breakdown in tolerance occurs is not known. In MG there is an interesting differential involvement of muscle groups, in particular, the extraocular muscles. This article reviews normal neuromuscular transmission, mechanisms of the autoimmune process of MG, and differential susceptibility of eye muscles to MG.

[1]  S. Higgs,et al.  Genetic Evidence for Involvement of Classical Complement Pathway in Induction of Experimental Autoimmune Myasthenia Gravis 1 , 2003, The Journal of Immunology.

[2]  P. Tonali,et al.  Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. , 2003, Brain : a journal of neurology.

[3]  J. Palace,et al.  Rapsyn mutations in hereditary myasthenia , 2003, Neurology.

[4]  R. Ruff,et al.  Susceptibility of Ocular Tissues to Autoimmune Diseases , 2003, Annals of the New York Academy of Sciences.

[5]  R. Ruff Neurophysiology of the Neuromuscular Junction: Overview , 2003, Annals of the New York Academy of Sciences.

[6]  J. D. Porter,et al.  Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from the skeletal muscle prototype. , 2003, Investigative ophthalmology & visual science.

[7]  A. Vincent,et al.  Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets , 2003, The Lancet Neurology.

[8]  L. Abbas Synapse Formation: Let's Stick Together , 2003, Current Biology.

[9]  S. D. Meriney,et al.  Presynaptic calcium influx, neurotransmitter release, and neuromuscular disease , 2002, Physiology & Behavior.

[10]  H. Kaminski,et al.  Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. , 2002, The Journal of clinical investigation.

[11]  P. Chinnery,et al.  Myasthenia Gravis and Related Disorders , 2020, The Autoimmune Diseases.

[12]  J. D. Porter Extraocular Muscle: Cellular Adaptations for a Diverse Functional Repertoire , 2002, Annals of the New York Academy of Sciences.

[13]  A. J. Harris,et al.  Patterning of skeletal muscle , 2002, Current Opinion in Neurobiology.

[14]  J. Sanes,et al.  Induction, assembly, maturation and maintenance of a postsynaptic apparatus , 2001, Nature reviews. Neuroscience.

[15]  J. D. Porter,et al.  Extraocular muscle is defined by a fundamentally distinct gene expression profile , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. J. Wood,et al.  Safety factor at the neuromuscular junction , 2001, Progress in Neurobiology.

[17]  J. Palace,et al.  Myasthenia gravis , 2001, The Lancet.

[18]  T. Sixma,et al.  A glia-derived acetylcholine-binding protein that modulates synaptic transmission , 2001, Nature.

[19]  T. Sixma,et al.  Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors , 2001, Nature.

[20]  R. Edwards,et al.  Molecular mechanisms of neurotransmitter release , 2001, Muscle & nerve.

[21]  W. Song,et al.  Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. , 2001, International immunopharmacology.

[22]  A. Vincent,et al.  Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies , 2001, Nature Medicine.

[23]  J. Howard,et al.  Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the δ subunit , 2001, Muscle & nerve.

[24]  H. Kaminski,et al.  The preferential involvement of extraocular muscles by myasthenia gravis , 2001 .

[25]  J. Howard,et al.  T cell recognition of muscle acetylcholine receptor in ocular myasthenia gravis , 2000, Journal of Neuroimmunology.

[26]  G. Gronseth,et al.  Practice parameter: Thymectomy for autoimmune myasthenia gravis (an evidence-based review) , 2000, Neurology.

[27]  N. Gilhus,et al.  Autoantibodies in thymoma-associated myasthenia gravis with myositis or neuromyotonia. , 2000, Archives of neurology.

[28]  J. Lindstrom Acetylcholine receptors and myasthenia , 2000, Muscle & nerve.

[29]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[30]  A. Levinson,et al.  Acetylcholine Receptor Alpha Subunit mRNA Expression in Human Thymus: Augmented Expression in Myasthenia Gravis and Upregulation by Interferon-γ , 1999 .

[31]  R. Ruff,et al.  End‐plate voltage‐gated sodium channels are lost in clinical and experimental myasthenia gravis , 1998, Annals of neurology.

[32]  N. Gilhus,et al.  Myasthenia gravis sera containing antiryanodine receptor antibodies inhibit binding of [3H]‐ryanodine to sacroplasmic reticulum , 1998, Muscle & nerve.

[33]  J. Bixby,et al.  Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction , 1998, Trends in Neurosciences.

[34]  M. Rüegg,et al.  Congenital myasthenic syndromes in two kinships with end-plate acetylcholine receptor and utrophin deficiency , 1998, Neurology.

[35]  B. Wallace scFvs get down to basics: How MuSK makes synapses , 1997, Nature Biotechnology.

[36]  A. Vincent,et al.  Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis , 1997, Annals of neurology.

[37]  K. Kumakura [Molecular mechanisms for neurotransmitter release]. , 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[38]  M. Bellone,et al.  Myasthenia Gravis: The Immunobiology of an Autoimmune Disease , 1996 .

[39]  R. Griggs,et al.  End‐plate acetylcholine receptor deficiency due to nonsense mutations in the ε subunit , 1996 .

[40]  H. Kaminski,et al.  Nitric oxide synthase is concentrated at the skeletal muscle endplate , 1996, Brain Research.

[41]  I. Wickelgren Synapse-Making Molecules Revealed , 1996, Science.

[42]  P. Distefano,et al.  Agrin Acts via a MuSK Receptor Complex , 1996, Cell.

[43]  J. Sanes,et al.  Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice , 1996, Cell.

[44]  N. Unwin Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the alpha subunits. , 1996, Journal of molecular biology.

[45]  D. Bredt,et al.  Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains , 1996, Cell.

[46]  H. Kaminski,et al.  Expression of acetylcholine receptor isoforms at extraocular muscle endplates. , 1996, Investigative ophthalmology & visual science.

[47]  J. Sanes,et al.  Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice , 1995, Nature.

[48]  B. Lu,et al.  Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses , 1995, Nature.

[49]  A. Lefvert,et al.  Idiotype- and anti-idiotype-reactive T lymphocytes in myasthenia gravis. Evidence for the involvement of different subpopulations of T helper lymphocytes. , 1994, Journal of immunology.

[50]  Min Yu,et al.  Augmented interferon-γ, interleukin-4 and transforming growth factor-β mRNA expression in blood mononuclear cells in myasthenia gravis , 1994, Journal of Neuroimmunology.

[51]  R. Ruff,et al.  Acetylcholine receptor subunit gene expression in thymic tissue , 1993, Muscle & nerve.

[52]  A. Engel,et al.  Myasthenia gravis , 1993, Neurology.

[53]  R. Ruff,et al.  Insights into Possible Skeletal Muscle Nicotinic Acetylcholine Receptor (AChR) Changes in Some Congenital Myasthenias from Physiological Studies, Point Mutations, and Subunit Substitutions of the AChR a , 1993, Annals of the New York Academy of Sciences.

[54]  E. F. Stanley Presynaptic Calcium Channels and the Transmitter Release Mechanism , 1993, Annals of the New York Academy of Sciences.

[55]  H. Wekerle The Thymus in Myasthenia Gravis a , 1993, Annals of the New York Academy of Sciences.

[56]  F. Padberg,et al.  Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. , 1992, The Journal of clinical investigation.

[57]  L. Moiola,et al.  Molecular anatomy of an autoantigen: T and B epitopes on the nicotinic acetylcholine receptor in myasthenia gravis. , 1992, Journal of Laboratory and Clinical Medicine.

[58]  S. Cannon The Neurology of Eye Movements (Contemporary Neurology Series) , 1992 .

[59]  B. G. Wallace,et al.  Agrin induces phosphorylation of the nicotinic acetylcholine receptor , 1991, Neuron.

[60]  B. G. Wallace,et al.  Mechanism of agrin-induced acetylcholine receptor aggregation. , 1992, Journal of neurobiology.

[61]  R. Wollmann,et al.  Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin , 1990, Clinical and experimental immunology.

[62]  J. Newsom-Davis,et al.  Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor–reactive T cells , 1990, Annals of neurology.

[63]  R. Pascuzzi Introduction to the Neuromuscular Junction and Neuromuscular Transmission , 1990, Seminars in neurology.

[64]  G. Biesecker,et al.  Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. , 1989, Journal of immunology.

[65]  B. Wallace,et al.  Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  L. Henderson,et al.  Regulation of acetylcholine receptor channel function during development of skeletal muscle. , 1988, Developmental biology.

[67]  N. Unwin,et al.  Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes , 1988, The Journal of cell biology.

[68]  D. Grob,et al.  The Course of Myasthenia Gravis and Therapies Affecting Outcome a , 1987, Annals of the New York Academy of Sciences.

[69]  D. Richman,et al.  Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane. , 1987, Journal of immunology.

[70]  D. Richman,et al.  Use of monoclonal antiacetylcholine receptor antibodies to investigate the macrophage inflammation of acute experimental myasthenia gravis , 1985, Neurology.

[71]  J. Sanes,et al.  Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres , 1985, Nature.

[72]  D. Richman,et al.  Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis. , 1985, Journal of immunology.

[73]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[74]  P. Limburg,et al.  Anti-acetylcholine receptor antibodies in myasthenia gravis Part 1. Relation to clinical parameters in 250 patients , 1983, Journal of the Neurological Sciences.

[75]  A. Vincent,et al.  Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. , 1982, Clinical and experimental immunology.

[76]  A. Vincent,et al.  Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. , 1980, Brain : a journal of neurology.

[77]  A. Engel,et al.  Ultrastructural Localization of the Terminal and Lytic Ninth Complement Component (C9) at the Motor End‐plate in Myasthenia Gravis , 1979, Journal of neuropathology and experimental neurology.

[78]  D. Drachman,et al.  Effect of myasthenic patients' immunoglobulin on acetylcholine receptor turnover: selectivity of degradation process. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Ulevitch,et al.  Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis , 1978, The Journal of experimental medicine.

[80]  J. Sanes,et al.  Cholinesterase is associated with the basal lamina at the neuromuscular junction , 1978, Nature.

[81]  A. Engel,et al.  Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. , 1977, Mayo Clinic proceedings.

[82]  A. Pestronk,et al.  Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. , 1977, The New England journal of medicine.

[83]  J. Davis,et al.  REMISSION OF MYASTHENIA GRAVIS FOLLOWING PLASMA-EXCHANGE , 1976, The Lancet.

[84]  J. Lindstrom,et al.  Antibody to acetylcholine receptor in myasthenia gravis , 1976, Neurology.

[85]  J. Patrick,et al.  Autoimmune Response to Acetylcholine Receptor , 1973, Science.

[86]  J. Walton DISORDERS OF VOLUNTARY MUSCLE , 1964, The Ulster Medical Journal.

[87]  B. Seegal,et al.  Immunofluorescence Demonstration of a Muscle Binding, Complement-Fixing Serum Globulin Fraction in Myasthenia Gravis. ∗ , 1960 .

[88]  J. Lindstrom Acetylcholine Receptor Structure , 2003 .

[89]  R. Ruff,et al.  Disorders of neuromuscular junction ion channels. , 1999, The American journal of medicine.

[90]  K. Mcintosh,et al.  How subtle differences in MHC class II affect the severity of experimental myasthenia gravis. , 1998, Clinical immunology and immunopathology.

[91]  R. Griggs,et al.  End-plate acetylcholine receptor deficiency due to nonsense mutations in the epsilon subunit. , 1996, Annals of neurology.

[92]  N. Gilhus,et al.  Titin antibodies in patients with late onset myasthenia gravis: clinical correlations. , 1995, Autoimmunity.

[93]  H. Link,et al.  Augmented interferon-gamma, interleukin-4 and transforming growth factor-beta mRNA expression in blood mononuclear cells in myasthenia gravis. , 1994, Journal of Neuroimmunology.

[94]  R. Ruff Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. , 1992, The American journal of physiology.

[95]  M. Ohta,et al.  Anti-Acetylcholine Receptor Antibody in Myasthenia Gravis , 1987 .

[96]  J. Lindstrom,et al.  Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. , 1982, Proceedings of the National Academy of Sciences of the United States of America.