Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

Aims. We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods. We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) ~20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L_(24/(1 + z)) vs. L_(70/(1 + z)) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at z ~ 1.55 ± 0.25 and z ~ 2.05 ± 0.25. Results. We observe the break in the infrared LF up to z ~ 2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)^(1.0 ± 0.9) combined with a density evolution proportional to (1 + z)^9−1.1 ± 1.5). At z ~ 2, luminous infrared galaxies (LIRGs: 10^(11)L_⊙ < L_(IR) < 10^(12) L_⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At z ~ 2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 10^(12)L_⊙ < L_(IR)) account for ~49% and ~17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields.

[1]  H. Rix,et al.  THE SIMPLE SURVEY: OBSERVATIONS, REDUCTION, AND CATALOG , 2010, 1011.2764.

[2]  A. Cimatti,et al.  The star-formation rates of 1.5 < z < 2.5 massive galaxies , 2010 .

[3]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[4]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[5]  David Elbaz,et al.  Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.

[6]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[7]  M. Dickinson,et al.  BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES , 2008, 0812.2927.

[8]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[9]  M. Scodeggio,et al.  THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY , 2008, 0808.0493.

[10]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[11]  Mullard Space Science Laboratory,et al.  The Star Formation History of the Universe as Revealed by Deep Radio Observations , 2008, 0802.4105.

[12]  NOAO,et al.  Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies , 2007, 0706.2164.

[13]  Astronomy,et al.  The Calibration of Mid-Infrared Star Formation Rate Indicators , 2007, 0705.3377.

[14]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[15]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[16]  D. Eisenstein,et al.  The Local Galaxy 8 μm Luminosity Function , 2007, 0704.3609.

[17]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[18]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[19]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[20]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[21]  B. Garilli,et al.  The cosmic star formation rate evolution from z = 5 to z = 0 from the VIMOS VLT deep survey , 2006, astro-ph/0609005.

[22]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[23]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[24]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[25]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[26]  D. Padgett,et al.  Spitzer 70 and 160 μm Observations of the Extragalactic First Look Survey , 2005, astro-ph/0509649.

[27]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[28]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[29]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[30]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[31]  W. Brandt,et al.  The Fall of Active Galactic Nuclei and the Rise of Star-forming Galaxies: A Close Look at the Chandra Deep Field X-Ray Number Counts , 2004, astro-ph/0408001.

[32]  D. Elbaz,et al.  The Nature of Faint 24 Micron Sources Seen in Spitzer Space Telescope Observations of ELAIS-N1 , 2004, astro-ph/0406386.

[33]  G. Rieke,et al.  Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z ≃ 2 , 2004, astro-ph/0406016.

[34]  P. Capak,et al.  A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North , 2004, astro-ph/0401354.

[35]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[36]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[37]  Cea,et al.  An ISOCAM survey through gravitationally lensing galaxy clusters. I. Source lists and source counts , 2003, astro-ph/0305400.

[38]  W. Brandt,et al.  The Chandra Deep Field North Survey. XIV. X-Ray-detected Obscured AGNs and Starburst Galaxies in the Bright Submillimeter Source Population , 2002, astro-ph/0211267.

[39]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[40]  D. Borgne,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002, astro-ph/0202359.

[41]  David Elbaz,et al.  The Bulk of the Cosmic Infrared Background Resolved by ISOCAM , 2002, astro-ph/0201328.

[42]  D. Elbaz,et al.  A long-wavelength view on galaxy evolution from deep surveys by the Infrared Space Observatory , 2001, astro-ph/0108292.

[43]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[44]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[45]  F. Masci,et al.  Models for Multiband Infrared Surveys , 2000, astro-ph/0009220.

[46]  Cong Xu,et al.  Local Luminosity Function at 15 Microns and Galaxy Evolution Seen by ISOCAM 15 Micron Surveys , 2000, astro-ph/0004216.

[47]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[48]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[49]  J. Huchra,et al.  The Local Luminosity Function at 25 Microns , 1998, astro-ph/9803149.

[50]  G. Neugebauer,et al.  The properties of infrared galaxies in the local universe , 1991 .

[51]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .