Knowledge reduction of pessimistic multigranulation rough sets in incomplete information systems

[1]  Nilanjan Dey,et al.  Adjectives Grouping in a Dimensionality Affective Clustering Model for Fuzzy Perceptual Evaluation , 2020, Int. J. Interact. Multim. Artif. Intell..

[2]  Mostafa Borhani,et al.  Soft Computing Modelling of Urban Evolution: Tehran Metropolis , 2020, Int. J. Interact. Multim. Artif. Intell..

[3]  B. S. Harish,et al.  Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network , 2020, Int. J. Interact. Multim. Artif. Intell..

[4]  Wei-Zhi Wu,et al.  Reduction foundation with multigranulation rough sets using discernibility , 2019, Artificial Intelligence Review.

[5]  Jinhai Li,et al.  Neighborhood attribute reduction: a multi-criterion approach , 2019, Int. J. Mach. Learn. Cybern..

[6]  Wei-Zhi Wu,et al.  Intuitionistic Fuzzy Rough Set-Based Granular Structures and Attribute Subset Selection , 2019, IEEE Transactions on Fuzzy Systems.

[7]  Ju-Sheng Mi,et al.  Attributes set reduction in multigranulation approximation space of a multi-source decision information system , 2018, Int. J. Mach. Learn. Cybern..

[8]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[9]  Prasenjit Mandal,et al.  Multi-granulation bipolar-valued fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes , 2017, Soft Computing.

[10]  Shunxiang Wu,et al.  A variable precision grey-based multi-granulation rough set model and attribute reduction , 2018, Knowl. Based Syst..

[11]  Wei-Zhi Wu,et al.  On the belief structures and reductions of multigranulation spaces with decisions , 2017, Int. J. Approx. Reason..

[12]  Tao Feng,et al.  Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions , 2017, Int. J. Approx. Reason..

[13]  Weihua Xu,et al.  Generalized multigranulation rough sets and optimal granularity selection , 2017, GRC 2017.

[14]  Wei-Zhi Wu,et al.  Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems , 2016, Fuzzy Sets Syst..

[15]  Witold Pedrycz,et al.  Rough sets in distributed decision information systems , 2016, Knowl. Based Syst..

[16]  Jun Zhang,et al.  Efficient attribute reduction from the viewpoint of discernibility , 2016, Inf. Sci..

[17]  Bing Huang,et al.  Intuitionistic fuzzy multigranulation rough sets , 2014, Inf. Sci..

[18]  Caihui Liu,et al.  On multi-granulation covering rough sets , 2014, Int. J. Approx. Reason..

[19]  Jiye Liang,et al.  Pessimistic rough set based decisions: A multigranulation fusion strategy , 2014, Inf. Sci..

[20]  Jiye Liang,et al.  Ieee Transactions on Knowledge and Data Engineering 1 a Group Incremental Approach to Feature Selection Applying Rough Set Technique , 2022 .

[21]  Weihua Xu,et al.  Multi-granulation rough sets based on tolerance relations , 2013, Soft Computing.

[22]  Yanhong She,et al.  On the structure of the multigranulation rough set model , 2012, Knowl. Based Syst..

[23]  Yuhua Qian,et al.  NMGRS: Neighborhood-based multigranulation rough sets , 2012, Int. J. Approx. Reason..

[24]  Jiye Liang,et al.  International Journal of Approximate Reasoning an Efficient Rough Feature Selection Algorithm with a Multi-granulation View , 2022 .

[25]  Weihua Xu,et al.  Multiple granulation rough set approach to ordered information systems , 2012, Int. J. Gen. Syst..

[26]  Sam Kwong,et al.  Geometrical interpretation and applications of membership functions with fuzzy rough sets , 2012, Fuzzy Sets Syst..

[27]  Ken Kaneiwa,et al.  A rough set approach to multiple dataset analysis , 2011, Appl. Soft Comput..

[28]  Jingyu Yang,et al.  Multi-granulation rough set : from crisp to fuzzy case , 2011 .

[29]  Jiye Liang,et al.  Approximation reduction in inconsistent incomplete decision tables , 2010, Knowl. Based Syst..

[30]  Jiye Liang,et al.  Incomplete Multigranulation Rough Set , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Yiyu Yao,et al.  MGRS: A multi-granulation rough set , 2010, Inf. Sci..

[32]  Yiyu Yao,et al.  Data analysis based on discernibility and indiscernibility , 2007, Inf. Sci..

[33]  Qinghua Hu,et al.  A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets , 2007, Inf. Sci..

[34]  Yiyu Yao,et al.  Neighborhood systems and approximate retrieval , 2006, Inf. Sci..

[35]  Yee Leung,et al.  Knowledge acquisition in incomplete information systems: A rough set approach , 2006, Eur. J. Oper. Res..

[36]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[37]  Lotfi A. Zadeh,et al.  Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems , 1998, Soft Comput..

[38]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[39]  Zdzis?aw Pawlak,et al.  Rough sets , 2005, International Journal of Computer & Information Sciences.

[40]  Andrzej Skowron,et al.  Boolean Reasoning for Decision Rules Generation , 1993, ISMIS.

[41]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[42]  Cecylia Rauszer,et al.  Rough Logic for Multi-Agent Systems , 1992, Logic at Work.

[43]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[44]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .