The Development of Quantum-Dot Cellular Automata

Quantum-dot cellular automata (QCA) is a paradigm for connecting nanoscale bistable devices to accomplish general-purpose computation. The idea has its origins in the technology of quantum dots, Coulomb blockade, and Landauer’s observations on digital devices and energy dissipation. We examine the early development of this paradigm and its various implementations.

[1]  S. Goodnick,et al.  Quantum-effect and single-electron devices , 2003 .

[2]  Gary H. Bernstein,et al.  Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata , 2000 .

[3]  C. Lent,et al.  Quantum-dot cellular automata: an architecture for molecular computing , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[4]  Dieter P. Kern,et al.  Towards quantum cellular automata operation in silicon: transport properties of silicon multiple dot structures , 2000 .

[5]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[6]  Craig S. Lent,et al.  Bistable saturation due to single electron charging in rings of tunnel junctions , 1994 .

[7]  Michael T. Niemier,et al.  Exploring and exploiting wire-level pipelining in emerging technologies , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[8]  Marya Lieberman,et al.  Nanometer scale rafts built from DNA tiles , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[9]  M. Kozicki,et al.  Nanostructure Physics and Fabrication , 1989 .

[10]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[11]  Gary H. Bernstein,et al.  Differential charge detection for quantum-dot cellular automata , 1997 .

[12]  Wolfgang Porod,et al.  Quantum-Dot Cellular Automata: Line and Majority Logic Gate , 1999 .

[13]  M. Devoret,et al.  Direct observation of macroscopic charge quantization , 1991 .

[14]  C. Lent,et al.  Demonstration of a six-dot quantum cellular automata system , 1998 .

[15]  C. Lent,et al.  Signal Energy in Quantum-Dot Cellular Automata Bit Packets , 2011 .

[16]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[17]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[18]  C. Lent,et al.  Experimental Test of Landauer's Principle at the Sub-kBT Level , 2012 .

[19]  D. Tougaw,et al.  A Scalable Signal Distribution Network for Quantum-Dot Cellular Automata , 2013, IEEE Transactions on Nanotechnology.

[20]  John D. Norton Waiting for Landauer , 2010 .

[21]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[22]  R. Landauer Is quantum mechanics useful , 1995 .

[23]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[24]  C. Lent,et al.  Fanout gate in quantum-dot cellular automata , 2007 .

[25]  Gary H. Bernstein,et al.  Conductance suppression due to correlated electron transport in coupled double quantum dots , 1999 .

[26]  Natalie A. Wasio,et al.  STM Imaging of Three-Metal-Center Molecules: Comparison of Experiment and Theory For Two Mixed-Valence Oxidation States , 2012 .

[27]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[28]  G. Tóth,et al.  Experimental demonstration of a latch in clocked quantum-dot cellular automata , 2001 .

[29]  Dhiraj K. Pradhan,et al.  RAEF: A Power Normalized System-Level Reliability Analysis and Estimation Framework , 2012, 2012 IEEE Computer Society Annual Symposium on VLSI.

[30]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[31]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[32]  John D. Norton,et al.  Exorcist XIV: The wrath of maxwell’s demon. Part II. from szilard to Landauer and beyond , 1999 .

[33]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[34]  Gary H. Bernstein,et al.  Temperature dependence of the locked mode in a single-electron latch , 2005, Microelectron. J..

[35]  Jie Chao,et al.  Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate , 2009, Nature nanotechnology.

[36]  Paul W. K. Rothemund,et al.  Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 , 2006 .

[37]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[38]  Craig S. Lent,et al.  An architecture for molecular computing using quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[39]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[40]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[41]  R. Schoelkopf,et al.  Radio-frequency single-electron transistor: Toward the shot-noise limit , 2001 .

[42]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[43]  Natalie A. Wasio,et al.  Adsorption of diferrocenylacetylene on Au(111) studied by scanning tunneling microscopy. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Anuradha Gupta,et al.  Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. , 2005, Journal of the American Chemical Society.

[45]  Reed,et al.  Nanostructures and mesoscopic systems , 1992 .

[46]  Michel Devoret,et al.  Single electron pump fabricated with ultrasmall normal tunnel junctions , 1991 .

[47]  C. Lent,et al.  Environmental decoherence stabilizes quantum-dot cellular automata , 2013 .

[48]  Ralph K. Cavin,et al.  Energy barriers, demons, and minimum energy operation of electronic devices , 2005 .

[49]  Daniel Murdock,et al.  Abstracts of papers of the American Chemical Society , 2011 .

[50]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[51]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[52]  Natalie A. Wasio,et al.  Through-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale. , 2012, Journal of the American Chemical Society.

[53]  Craig S. Lent,et al.  Fundamental limits of energy dissipation in charge-based computing , 2010 .

[54]  W. Porod,et al.  Quantum-dot cellular automata: Review and recent experiments (invited) , 1999 .

[55]  Ploog,et al.  Single-electron charging of quantum-dot atoms. , 1992, Physical review letters.

[56]  Giuseppe Iannaccone,et al.  A QCA cell in silicon-on-insulator technology: theory and experiment , 2003 .

[57]  Rebecca C. Quardokus,et al.  Charge localization in isolated mixed-valence complexes: an STM and theoretical study. , 2010, Journal of the American Chemical Society.

[58]  Simple Quantum Models of Coulomb Effects in Semiconductor Nanostructures , 1992 .

[59]  J. Mutus,et al.  Controlled coupling and occupation of silicon atomic quantum dots at room temperature. , 2008, Physical review letters.

[60]  Dieter P. Kern,et al.  Single-electron charging in doped silicon double dots , 1999 .

[61]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[62]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[63]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[64]  Rolf Landauer,et al.  Is quantum mechanics useful? , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[65]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[66]  Philip S Lukeman,et al.  Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. , 2004, Chemical communications.

[67]  A. Dzurak,et al.  Demonstration of a silicon-based quantum cellular automata cell , 2006 .

[68]  Dieter P. Kern,et al.  Simultaneous operation of two adjacent double dots in silicon , 2001 .

[69]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum‐dot cells , 1993 .

[70]  Peter M. Kogge,et al.  Bouncing threads: merging a new execution model into a nanotechnology memory , 2003, IEEE Computer Society Annual Symposium on VLSI, 2003. Proceedings..

[71]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[72]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[73]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[74]  Davies,et al.  Fluctuations in submicrometer semiconducting devices caused by the random positions of dopants. , 1989, Physical review. B, Condensed matter.

[75]  A. N. Korotkov,et al.  SINGLE-ELECTRON-PARAMETRON-BASED LOGIC DEVICES , 1998 .

[76]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[77]  J. Bokor,et al.  Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. , 2011, Physical review letters.

[78]  M. Kastner,et al.  The single electron transistor and artificial atoms , 2000, Annalen der Physik.

[79]  Konstantinos D. Demadis,et al.  The Localized-to-Delocalized Transition in Mixed-Valence Chemistry , 2001 .

[80]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[81]  C. Lent,et al.  Quantum‐Dot Cellular Automata at a Molecular Scale , 2002 .

[82]  Ravi Kummamuru,et al.  A two-stage shift register for clocked Quantum-Dot Cellular Automata. , 2002, Journal of nanoscience and nanotechnology.

[83]  D. Ritchie,et al.  Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure , 2007 .

[84]  Peter M. Kogge,et al.  An Analysis of Missing Cell Defects in Quantum-Dot Cellular Automata , 2005 .

[85]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[86]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[87]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[88]  Marya Lieberman,et al.  DNA Origami as Self-assembling Circuit Boards , 2010, UC.

[89]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[90]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[91]  Ismo Hänninen,et al.  Energy Recovery and Logical Reversibility in Adiabatic CMOS Multiplier , 2013, RC.

[92]  C. Lent,et al.  Clocked quantum-dot cellular automata shift register , 2003 .

[93]  Lars Oberbeck,et al.  Construction of a silicon-based solid state quantum computer , 2001, Quantum Inf. Comput..

[94]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[95]  David A. Ritchie,et al.  Realization of quantum-dot cellular automata using semiconductor quantum dots , 2003 .

[96]  Wolfgang Porod,et al.  Practical issues in the realization of quantum-dot cellular automata , 1996 .

[97]  David A. Ritchie,et al.  Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots , 2003 .

[98]  M. Furlan,et al.  Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability , 2008 .

[99]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[100]  E. W. Johnson,et al.  Programmable Logic Implemented Using Quantum-Dot Cellular Automata , 2012, IEEE Transactions on Nanotechnology.