Estimation and testing of higher-order spatial autoregressive panel data error component models

This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM) estimation procedure of the spatial autoregressive parameters of the disturbance process and define a generalized two-stage least squares estimator for the regression parameters of the model. We prove consistency of the proposed estimators, derive their joint asymptotic distribution, and provide Monte Carlo evidence on their small sample performance.

[1]  Lung-fei Lee,et al.  Estimation of spatial autoregressive panel data models with fixed effects , 2010 .

[2]  Lung-fei Lee,et al.  EFFICIENT GMM ESTIMATION OF HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS WITH AUTOREGRESSIVE DISTURBANCES , 2009, Econometric Theory.

[3]  H. Kelejian,et al.  A Spatial Cliff-Ord-Type Model with Heteroskedastic Innovations: Small and Large Sample Results , 2008, Social Science Research Network.

[4]  Michael Pfaffermayr,et al.  The Hausman Test in a Cliff and Ord Panel Model , 2008 .

[5]  H. Kelejian,et al.  A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances , 1998 .

[6]  B. Baltagi,et al.  A Generalized Spatial Panel Data Model with Random Effects , 2009, SSRN Electronic Journal.

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Harry H. Kelejian,et al.  A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model , 1999 .

[9]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models , 1997 .

[10]  Y. Mundlak On the Pooling of Time Series and Cross Section Data , 1978 .

[11]  H. Badinger,et al.  Estimation of higher‐order spatial autoregressive cross‐section models with heteroscedastic disturbances , 2011 .

[12]  H. Badinger,et al.  GM Estimation of Higher-Order Spatial Autoregressive Processes in Cross-Section Models with Heteroskedastic Disturbances , 2008, SSRN Electronic Journal.

[13]  Kristian Skrede Gleditsch,et al.  Space Is More than Geography: Using Spatial Econometrics in the Study of Political Economy , 2006 .

[14]  J. LeSage Introduction to spatial econometrics , 2009 .

[15]  Badi H. Baltagi,et al.  Testing Panel Data Regression Models with Spatial Error Correlation , 2002 .

[16]  Gianfranco Piras,et al.  On model specification and parameter space definitions in higher order spatial econometric models , 2012 .

[17]  H. Kelejian,et al.  Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances , 2008, Journal of econometrics.

[18]  James P. LeSage,et al.  Pitfalls in Higher Order Model Extensions of Basic Spatial Regression Methodology , 2011 .

[19]  Mudit Kapoor,et al.  Panel data models with spatially correlated error components , 2007 .

[20]  Joris Pinkse,et al.  The Future of Spatial Econometrics , 2010 .

[21]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models: Asymptotic Theory , 1997 .

[22]  Scott Gilbert,et al.  Testing the distribution of error components in panel data models , 2002 .