Zeeman spectroscopy and crystal-field analysis of low symmetry centres in Nd3+ doped Y2SiO5

We report on infrared to visible Zeeman absorption spectroscopy and parameterised crystal-field modelling of Nd3+ centres in Y2SiO5 through the use of experimentally inferred crystal-field energy levels and Zeeman directional electronic g values. We demonstrate that good agreement between the calculated and experimental crystal-field energy levels as well as directional Zeeman g values along all three crystallographic axes can be obtained. Further, we demonstrate that the addition of correlation crystal field effects successfully account for discrepancies that arise between the calculated and experimental values relevant to the 2H 11/2 (2) multiplet in a one-electron crystal field model.

[1]  J. Morton,et al.  Coherent spin dynamics of rare-earth doped crystals in the high-cooperativity regime , 2022, Physical Review B.

[2]  M. F. Reid,et al.  Zeeman and laser site selective spectroscopy of C1 point group symmetry Sm3+ centres in Y2SiO5: a parametrized crystal-field analysis for the 4f 5 configuration , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  M. F. Reid,et al.  Prediction of optical polarization and high-field hyperfine structure via a parametrized crystal-field model for low-symmetry centers in Er3+ -doped Y2SiO5 , 2021, Physical Review B.

[4]  M. F. Reid,et al.  Intra- and inter-configurational electronic transitions of Ce3+-doped Y2SiO5 : Spectroscopy and crystal field analysis , 2021, Optical Materials.

[5]  M. F. Reid,et al.  Laser site-selective spectroscopy of Nd3+-doped Y2SiO5 , 2021 .

[6]  M. F. Reid,et al.  Electron-nuclear interactions as a test of crystal field parameters for low-symmetry systems: Zeeman hyperfine spectroscopy of Ho3+ -doped Y2SiO5 , 2021, 2103.09343.

[7]  J. Longdell,et al.  Long spin coherence times in the ground state and an optically excited state of $^{167}$Er$^{3+}$:Y$_2$SiO$_5$ at zero magnetic field. , 2020 .

[8]  J. Longdell,et al.  Long spin coherence times in the ground state and in an optically excited state of Er3+167:Y2SiO5 at zero magnetic field , 2020, Physical Review B.

[9]  G. Guo,et al.  Hyperfine Structure and Coherent Dynamics of Rare-Earth Spins Explored with Electron-Nuclear Double Resonance at Subkelvin Temperatures , 2019, Physical Review Applied.

[10]  M. Afzelius,et al.  Coherence Time Extension by Large-Scale Optical Spin Polarization in a Rare-Earth Doped Crystal , 2019, Physical Review X.

[11]  M. F. Reid,et al.  Transferability of Crystal-Field Parameters for Rare-Earth Ions in Y2SiO5 Tested by Zeeman Spectroscopy , 2018, Physics of the Solid State.

[12]  T. Gavrilova,et al.  Crystal environment of impurity Nd3+ ion in yttrium and scandium orthosilicate crystals. , 2018, Journal of magnetic resonance.

[13]  Philippe Goldner,et al.  Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins , 2017, Nature Materials.

[14]  N. Gisin,et al.  Efficient optical pumping using hyperfine levels in 145Nd3+:Y2SiO5 and its application to optical storage , 2017, 1712.02682.

[15]  N. Gisin,et al.  Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate , 2016, 1611.05444.

[16]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[17]  J. Morton,et al.  Coherent storage of microwave excitations in rare-earth nuclear spins. , 2014, Physical review letters.

[18]  Philippe Goldner,et al.  Storage of hyperentanglement in a solid-state quantum memory , 2014, 1412.6488.

[19]  M. Yin,et al.  Spectroscopic distinctions between two types of Ce(3+) ions in X2-Y2SiO5: a theoretical investigation. , 2014, The journal of physical chemistry. A.

[20]  N. Gisin,et al.  Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory , 2014, Nature Photonics.

[21]  Christian Hubrich,et al.  Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. , 2013, Physical review letters.

[22]  M. Siegel,et al.  Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. , 2012, Physical Review Letters.

[23]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[24]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[25]  J. Longdell,et al.  Method of extending hyperfine coherence times in Pr3+:Y2SiO5. , 2003, Physical review letters.

[26]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[27]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[28]  R. Macfarlane,et al.  Measurement of photon echoes in Er:Y 2 SiO 5 at 1.5 µm with a diode laser and an amplifier , 1997 .

[29]  Reid,et al.  Energy-level and line-strength analysis of optical transitions between Stark levels in Nd3+:Y3Al5O12. , 1994, Physical review. B, Condensed matter.

[30]  Reid,et al.  Correlation-crystal-field analysis of the 2H(2)11/2 multiplet of Nd3+ , 1990, Physical review. B, Condensed matter.

[31]  R. S. Rana,et al.  A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 , 1989 .

[32]  D. Newman,et al.  Many‐body crystal field calculations. II. Results for the system Pr3+–Cl− , 1987 .

[33]  M. F. Reid Correlation crystal field analyses with orthogonal operators , 1987 .

[34]  B. Judd Correlation Crystal Fields for Lanthanide Ions , 1977 .

[35]  J. Lavoie,et al.  Ef fi cient optical pumping using hyper fi ne levels in 145 Nd 3 + : Y 2 SiO 5 and its application to optical storage , 2018 .

[36]  S. P. Horvath,et al.  High-resolution spectroscopy and novel crystal-field methods for rare-earth based quantum information processing , 2016 .

[37]  C. Thiel,et al.  Magnetic g tensors for the 4 I 15Õ2 and 4 I 13Õ2 states of Er 3+ :Y 2 SiO 5 , 2008 .

[38]  C. Thiel,et al.  Magnetic g tensors for the 4I15∕ 2 and 4I13∕ 2 states of Er3+:Y2SiO5 , 2008 .

[39]  Faucher,et al.  The anomalous crystal field splittings of 2 H 11 / 2 ( Nd 3 + , 4 f 3 ) , 2007 .

[40]  Bernard Jacquier,et al.  Spectroscopic properties of rare earths in optical materials , 2005 .

[41]  M. Faucher,et al.  Empirically corrected crystal field calculation within the 2H(2)11/2 level of Nd3+ , 1989 .

[42]  J. Longdell,et al.  Method of extending hyperfine coherence times in Pr 3 + : Y 2 SiO , 2022 .