Central Schemes for Multidimensional Hamilton-Jacobi Equations
暂无分享,去创建一个
[1] P. Lax,et al. Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[2] Gabriella Puppo,et al. High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..
[3] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[4] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[5] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[6] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[7] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[8] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[9] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[10] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[11] Chi-Wang Shu,et al. High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..
[12] Z. Xin,et al. Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .
[13] Chi-Wang Shu,et al. A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[14] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[15] S. Osher,et al. High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .
[16] Chi-Tien Lin,et al. High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[17] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[18] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[19] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[20] P. Arminjon,et al. Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .
[21] Chi-Wang Shu,et al. Analysis of the discontinuous Galerkin method for Hamilton—Jacobi equations , 2000 .
[22] E. Tadmor,et al. Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .
[23] Eitan Tadmor,et al. New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .
[24] Alexander Kurganov,et al. Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..
[25] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[26] R. Abgrall. Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .
[27] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[28] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[29] Gabriella Puppo,et al. Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..
[30] P. Souganidis,et al. Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations , 1995 .
[31] Stanley Osher,et al. Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .
[32] Doron Levy,et al. A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..
[33] Doron Levy,et al. N A ] 1 6 Fe b 20 00 A Third-Order Semi-Discrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000 .
[34] Chi-Tien Lin,et al. $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.
[35] G. Russo,et al. Central WENO schemes for hyperbolic systems of conservation laws , 1999 .
[36] P. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .
[37] P. Lions,et al. Two approximations of solutions of Hamilton-Jacobi equations , 1984 .
[38] P. Lions,et al. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .