Dust Emission in an Accretion-rate-limited Sample of z ≳ 6 Quasars

We present Atacama Large Millimeter Array 1 mm observations of the rest-frame far-infrared (FIR) dust continuum in 27 quasars at redshifts 6.0 ≲ z < 6.7. We detect FIR emission at ≳3σ in all quasar host galaxies with flux densities at ∼1900 GHz in the rest-frame of 0.12 < Srest,1900 GHz < 5.9 mJy, with a median (mean) flux density of 0.88 mJy (1.59 mJy). The implied FIR luminosities range from = (0.27–13) × 1012 , with 74% of our quasar hosts having > 1012 . The estimated dust masses are = 107–109 . If the dust is heated only by star formation, then the star formation rates in the quasar host galaxies are between 50 and 2700 . In the framework of the host galaxy–black hole coevolution model a correlation between ongoing black hole growth and star formation in the quasar host galaxy would be expected. However, combined with results from the literature to create a luminosity-limited quasar sample, we do not find a strong correlation between quasar UV luminosity (a proxy for ongoing black hole growth) and FIR luminosity (star formation in the host galaxy). The absence of such a correlation in our data does not necessarily rule out the coevolution model, and could be due to a variety of effects (including different timescales for black hole accretion and FIR emission).

[1]  M. Strauss,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ∼ 6 studied with ALMA , 2018, 1802.05742.

[2]  H. Rix,et al.  An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.

[3]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[4]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[5]  H. Rix,et al.  Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy , 2017, 1712.01886.

[6]  T. Davis,et al.  The Close AGN Reference Survey (CARS): Mrk 1018 halts dimming and experiences strong short-term variability , 2017, 1710.09382.

[7]  A. Omont,et al.  A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6 , 2017, 1710.02212.

[8]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[9]  R. McMahon,et al.  Molecular Gas in Three z ∼ 7 Quasar Host Galaxies , 2017, 1707.05238.

[10]  Xiaohui Fan,et al.  Gas Dynamics of a Luminous z = 6.13 Quasar ULAS J1319+0950 Revealed by ALMA High-resolution Observations , 2017, The Astrophysical Journal.

[11]  K. Isaak,et al.  Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies , 2017, 1705.10530.

[12]  H. Rix,et al.  Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6 , 2017, Nature.

[13]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8 , 2017, 1704.05854.

[14]  Adam D. Myers,et al.  First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey , 2017, 1703.07490.

[15]  P. Hewett,et al.  The Compact, ∼1 kpc Host Galaxy of a Quasar at a Redshift of 7.1 , 2017, 1702.03852.

[16]  L. Danese,et al.  THE MAIN SEQUENCES OF STAR-FORMING GALAXIES AND ACTIVE GALACTIC NUCLEI AT HIGH REDSHIFT , 2016, 1610.05910.

[17]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[18]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[19]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[20]  S. Oliver,et al.  Extreme star formation events in quasar hosts over 0.5 < z < 4 , 2016, 1607.06459.

[21]  Xiaohui Fan,et al.  PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT z = 6.3 , 2016, 1606.09634.

[22]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[23]  J. Vieira,et al.  Star formation rates in luminous quasars at 2 < z < 3 , 2016, 1602.02755.

[24]  R. McMahon,et al.  BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.

[25]  M. Volonteri,et al.  RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE , 2015, 1508.06274.

[26]  Xiaohui Fan,et al.  BRIGHT [C II] 158 μm EMISSION IN A QUASAR HOST GALAXY AT z = 6.54 , 2015, 1504.05216.

[27]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[28]  A. Omont,et al.  STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.

[29]  P. Hewett,et al.  The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641 , 2014, 1411.5551.

[30]  R. Neri,et al.  First CO(17-16) emission line detected in a z > 6 quasar , 2014, 1409.4413.

[31]  IPAC,et al.  ALMA IMAGING OF GAS AND DUST IN A GALAXY PROTOCLUSTER AT REDSHIFT 5.3: [C ii] EMISSION IN “TYPICAL” GALAXIES AND DUSTY STARBURSTS ≈1 BILLION YEARS AFTER THE BIG BANG , 2014, 1404.7159.

[32]  H. Rix,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION , 2014, 1402.5976.

[33]  R. Schneider,et al.  The origin of the Far-infrared continuum of z ~ 6 quasars: a radiative transfer model for SDSS J1148+5251 , 2014, 1402.2279.

[34]  Padova,et al.  THE COEVOLUTION OF SUPERMASSIVE BLACK HOLES AND MASSIVE GALAXIES AT HIGH REDSHIFT , 2013, 1312.3751.

[35]  A. Goulding,et al.  BLACK HOLE VARIABILITY AND THE STAR FORMATION–ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS? , 2013, 1306.3218.

[36]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[37]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[38]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[39]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[40]  A. Omont,et al.  The Canada-France High-z Quasar Survey: 1.2mm Observations , 2013, 1301.6632.

[41]  H. Rottgering,et al.  NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 , 2012, 1207.3283.

[42]  H. Rix,et al.  HUBBLE SPACE TELESCOPE NARROWBAND SEARCH FOR EXTENDED Lyα EMISSION AROUND TWO z > 6 QUASARS , 2012, 1207.2155.

[43]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[44]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[45]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[46]  A. M. Swinbank,et al.  The LABOCA survey of the Extended Chandra Deep Field-South: clustering of submillimetre galaxies , 2011, 1112.0321.

[47]  Xiaohui Fan,et al.  FAR-INFRARED AND MOLECULAR CO EMISSION FROM THE HOST GALAXIES OF FAINT QUASARS AT z ∼ 6 , 2011, 1107.5065.

[48]  H. Rix,et al.  EVIDENCE FOR NON-EVOLVING Fe ii/Mg ii RATIOS IN RAPIDLY ACCRETING z ∼ 6 QSOs , 2011, 1106.5501.

[49]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[50]  D. Calzetti,et al.  CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE–FREE EMISSION IN NGC 6946 , 2011, 1105.4877.

[51]  Xiaohui Fan,et al.  CO (2–1) LINE EMISSION IN REDSHIFT 6 QUASAR HOST GALAXIES , 2011, 1105.4199.

[52]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[53]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[54]  F. Walter,et al.  IONIZATION NEAR ZONES ASSOCIATED WITH QUASARS AT z ∼ 6 , 2010, 1003.0016.

[55]  Xiaohui Fan,et al.  MOLECULAR GAS IN z ∼ 6 QUASAR HOST GALAXIES , 2010, 1002.1561.

[56]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[57]  F. Walter,et al.  IMAGING ATOMIC AND HIGHLY EXCITED MOLECULAR GAS IN a z = 6.42 QUASAR HOST GALAXY: COPIOUS FUEL FOR AN EDDINGTON-LIMITED STARBURST AT THE END OF COSMIC REIONIZATION , 2009, 0908.0018.

[58]  H. Rix,et al.  NEAR-INFRARED SPECTROSCOPY OF SDSS J0303 − 0019: A LOW-LUMINOSITY, HIGH-EDDINGTON-RATIO QUASAR AT z ∼ 6 , 2009, 0907.0435.

[59]  G. Richards,et al.  A SURVEY OF z ∼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. II. DISCOVERY OF SIX QUASARS AT zAB>21 , 2009, 0905.4126.

[60]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[61]  R. McLure,et al.  SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA–FRANCE HIGH-z QUASAR SURVEY , 2009, 0901.0565.

[62]  Liverpool John Moores University,et al.  Discovery of a redshift 6.13 quasar in the UKIRT Infrared Deep Sky Survey , 2008, 0810.4180.

[63]  Xiaohui Fan,et al.  Thermal Emission from Warm Dust in the Most Distant Quasars , 2008, 0806.3022.

[64]  Robert H. Becker,et al.  A SURVEY OF z ∼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. I. A FLUX-LIMITED SAMPLE AT zAB < 21 , 2007, 0708.2578.

[65]  H. Rix,et al.  Black Hole Masses and Enrichment of z ~ 6 SDSS Quasars , 2007, 0707.1662.

[66]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[67]  Thierry Forveille,et al.  Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey , 2007, 0706.0914.

[68]  Xiaohui Fan,et al.  Millimeter and Radio Observations of z ∼ 6 Quasars , 2007, The Astronomical Journal.

[69]  I. McGreer,et al.  Discovery of a z = 6.1 Radio-Loud Quasar in the NOAO Deep Wide Field Survey , 2006, astro-ph/0607278.

[70]  D. Eisenstein,et al.  The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey , 2006, astro-ph/0605030.

[71]  C. Carilli,et al.  350 μm Dust Emission from High-Redshift Quasars , 2006, astro-ph/0603121.

[72]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[73]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[74]  Xiaohui Fan,et al.  Resolved Molecular Gas in a Quasar Host Galaxy at Redshift z = 6.42 , 2004, astro-ph/0410229.

[75]  P. Kroupa,et al.  Galactic-Field Initial Mass Functions of Massive Stars , 2003, astro-ph/0308356.

[76]  K. M. Menten,et al.  High-excitation CO in a quasar host galaxy at z = 6.42 , 2003, astro-ph/0307408.

[77]  M. A. Strauss,et al.  Molecular gas in the host galaxy of a quasar at redshift z = 6.42 , 2003, Nature.

[78]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[79]  National Radio Astronomy Observatory,et al.  Sensitive Observations at 1.4 and 250 GHz of z > 5 QSOs , 2003, astro-ph/0304097.

[80]  Cambridge,et al.  The far-infrared-submillimetre spectral energy distribution of high-redshift quasars -- , 2001, astro-ph/0102116.

[81]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[82]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[83]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .

[84]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .