A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation

In this paper, a meshless collocation method is considered to solve the multi-term time fractional diffusion-wave equation in two dimensions. The moving least squares reproducing kernel particle approximation is employed to construct the shape functions for spatial approximation. Also, the Caputo’s time fractional derivatives are approximated by a scheme of order O(τ3−α), 1< α < 2. Stability and convergence of the proposed scheme are discussed. Some numerical examples are given to confirm the efficiency and reliability of the proposed method.

[1]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[2]  Yaolin Jiang,et al.  Analytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditions , 2013 .

[3]  Stevan Pilipović,et al.  A diffusion wave equation with two fractional derivatives of different order , 2007 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[6]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[7]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[8]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[10]  K. N. Rai,et al.  A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues , 2010, Math. Comput. Model..

[11]  Na Liu,et al.  An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation , 2015 .

[12]  Mehdi Dehghan,et al.  A tau approach for solution of the space fractional diffusion equation , 2011, Comput. Math. Appl..

[13]  Arvet Pedas,et al.  Spline collocation methods for linear multi-term fractional differential equations , 2011, J. Comput. Appl. Math..

[14]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[15]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[16]  Wing Kam Liu,et al.  Moving least-square reproducing kernel method Part II: Fourier analysis , 1996 .

[17]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[18]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[19]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[20]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[21]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[22]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[23]  Fawang Liu,et al.  Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation , 2014 .

[24]  Fawang Liu,et al.  Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations , 2014, Appl. Math. Comput..

[25]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[26]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[27]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[28]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[29]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[30]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[31]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[32]  Fawang Liu,et al.  A RBF meshless approach for modeling a fractal mobile/immobile transport model , 2014, Appl. Math. Comput..

[33]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[34]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[35]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[36]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[37]  Sung-Kie Youn,et al.  The least-squares meshfree method for solving linear elastic problems , 2003 .

[38]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[39]  John T. Katsikadelis,et al.  Numerical solution of multi‐term fractional differential equations , 2009 .

[40]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[41]  Mehdi Dehghan,et al.  A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method , 2015, Comput. Math. Appl..

[42]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[43]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[44]  Yinnian He,et al.  Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems☆ , 2014 .

[45]  Mehdi Dehghan,et al.  An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations , 2015 .

[46]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[47]  Mehdi Dehghan,et al.  Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method , 2015, J. Comput. Appl. Math..

[48]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[49]  Satya N. Atluri,et al.  The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method , 2005, Adv. Comput. Math..

[50]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[51]  R J McGough,et al.  THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN. , 2013, Electronic journal of mathematical analysis and applications.

[52]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[53]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[54]  I. Turner,et al.  A high-order spectral method for the multi-term time-fractional diffusion equations , 2016 .

[55]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[56]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[57]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[58]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[59]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[60]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[61]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[62]  Mehdi Dehghan,et al.  Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations , 2015, J. Comput. Appl. Math..

[63]  P. Zhuang,et al.  A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation , 2015, Appl. Math. Comput..

[64]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[65]  Leevan Ling,et al.  Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .

[66]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[67]  Guofei Pang,et al.  A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction , 2016, J. Comput. Phys..

[68]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[69]  Mark M Meerschaert,et al.  Analytical time-domain Green's functions for power-law media. , 2008, The Journal of the Acoustical Society of America.

[70]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[71]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[72]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[73]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[74]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[75]  S. Wang,et al.  Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems , 2011 .

[76]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .