Completeness of superintegrability in two-dimensional constant-curvature spaces

We classify the Hamiltonians H = px2 + py2 + V(x,y) of all classical superintegrable systems in two-dimensional complex Euclidean space with two additional second-order constants of the motion. We similarly classify the superintegrable Hamiltonians H = J12 + J22 + J32 + V(x, y, z) on the complex two-sphere where x2 + y2 + z2 = 1. This is achieved in all generality using properties of the complex Euclidean group and the complex orthogonal group.