miRNA involvement in angiogenesis in age-related macular degeneration

[1]  D. Redelmeier,et al.  Intravitreal anti-vascular endothelial growth factor treatment and the risk of thromboembolism. , 2015, American journal of ophthalmology.

[2]  G. Pertile,et al.  Long-Term Results of Full Macular Translocation for Choroidal Neovascularization in Age-Related Macular Degeneration. , 2015, Ophthalmology.

[3]  Tao Wang,et al.  MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2 , 2015, Tumor Biology.

[4]  J. Provis,et al.  Identification of miRNAs in a Model of Retinal Degenerations. , 2015, Investigative ophthalmology & visual science.

[5]  Huirong Shi,et al.  MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer. , 2014, Oncology reports.

[6]  Thomas C Roberts,et al.  The MicroRNA Biology of the Mammalian Nucleus , 2014, Molecular therapy. Nucleic acids.

[7]  R. Klein,et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. , 2014, The Lancet. Global health.

[8]  M. Fabbri,et al.  MicroRNAs and other non-coding RNAs as targets for anticancer drug development , 2013, Nature Reviews Drug Discovery.

[9]  J. Rakic,et al.  Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice , 2013, Nature Protocols.

[10]  J. Minna,et al.  miR-93-directed down-regulation of DAB2 defines a novel oncogenic pathway in lung cancer , 2013, Oncogene.

[11]  A. Bouchie First microRNA mimic enters clinic , 2013, Nature Biotechnology.

[12]  Yang Zhang,et al.  Clinical significance of microRNA-93 downregulation in human colon cancer , 2013, European journal of gastroenterology & hepatology.

[13]  M. Siemerink,et al.  Endothelial Tip Cells in Ocular Angiogenesis , 2013, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[14]  R. Askeland,et al.  MiR-93 enhances angiogenesis and metastasis by targeting LATS2 , 2012, Cell cycle.

[15]  Shalini Sharma,et al.  Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. , 2012, The American journal of pathology.

[16]  Jie Dong,et al.  miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. , 2011, World journal of gastroenterology.

[17]  C. Emanueli,et al.  MicroRNA regulation in angiogenesis. , 2011, Vascular pharmacology.

[18]  M. Yamakuchi,et al.  MicroRNA-22 Regulates Hypoxia Signaling in Colon Cancer Cells , 2011, PloS one.

[19]  E. Olson,et al.  Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters , 2011, Proceedings of the National Academy of Sciences.

[20]  B. Jiang,et al.  MiR-21 Induced Angiogenesis through AKT and ERK Activation and HIF-1α Expression , 2011, PloS one.

[21]  Subrata Chakrabarti,et al.  MicroRNA-200b Regulates Vascular Endothelial Growth Factor–Mediated Alterations in Diabetic Retinopathy , 2011, Diabetes.

[22]  Jie Yang,et al.  MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8 , 2011, Oncogene.

[23]  J. Cooke,et al.  MicroRNA and mechanisms of impaired angiogenesis in diabetes mellitus. , 2011, Circulation.

[24]  Hans E. Grossniklaus,et al.  Animal models of choroidal and retinal neovascularization , 2010, Progress in Retinal and Eye Research.

[25]  Sabita Roy,et al.  Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. , 2010, The Journal of clinical investigation.

[26]  AnnaZampetaki,et al.  Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes , 2010 .

[27]  Stefanie Dimmeler,et al.  Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. , 2010, Blood.

[28]  J. Long,et al.  Identification of MicroRNA-93 as a Novel Regulator of Vascular Endothelial Growth Factor in Hyperglycemic Conditions* , 2010, The Journal of Biological Chemistry.

[29]  R. Soares,et al.  Bevacizumab and ranibizumab on microvascular endothelial cells: A comparative study , 2009, Journal of cellular biochemistry.

[30]  P. Campochiaro,et al.  MicroRNAs regulate ocular neovascularization. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[31]  D. Gorski,et al.  Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. , 2008, Blood.

[32]  P. Campochiaro,et al.  Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. , 2006, Human gene therapy.

[33]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[34]  N. Socci,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[35]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[36]  A. Kramer,et al.  Antiseptic prophylaxis and therapy in ocular infections: principles, clinical practice and infection control. , 2002 .

[37]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[38]  P. Campochiaro,et al.  VEGF is major stimulator in model of choroidal neovascularization. , 2000, Investigative ophthalmology & visual science.

[39]  B. Sumpio,et al.  Antiproliferative effect of elevated glucose in human microvascular endothelial cells , 1998, Journal of cellular biochemistry.

[40]  R. Klein,et al.  Prevalence of age-related maculopathy. The Beaver Dam Eye Study. , 1992, Ophthalmology.

[41]  Stefanie Dimmeler,et al.  Targeting microRNA expression to regulate angiogenesis. , 2008, Trends in pharmacological sciences.