A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery

Abstract The fracture of Si particles due to internal stresses formed during the intercalation of lithium ions was described by means of a thermal analogy model and brittle fracture damage parameter. The stresses were calculated following the diffusion equation and equations of elasticity with an appropriate volumetric expansion term. The results were compared with the acoustic emission data from the experiments on electrochemical cycling of Li ion half-cells with silicon electrodes. A good correlation between experiment and prediction was observed. The results of computations with different particle sizes show the existence of a critical size below which fracture during the lithiation is not expected to occur. Such a critical size appears to be within micrometer scale.

[1]  H. Inoue,et al.  In Situ Monitoring of Hydrogen Storage Alloy Negative Electrode during Charging by an Acoustic Emission Technique , 2006 .

[2]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[3]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[4]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[5]  T. Takamura,et al.  Li insertion/extraction characteristics of a vacuum-deposited Si-Sn two-component film , 2005 .

[6]  S. Manson,et al.  Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.

[7]  Claus Daniel,et al.  Materials and processing for lithium-ion batteries , 2008 .

[8]  Marc Legros,et al.  Low‐cycle fatigue in silicon: comparison with fcc metals , 2007 .

[9]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[10]  A. Manthiram,et al.  Microstrain and Capacity Fade in Spinel Manganese Oxides , 2002 .

[11]  L. Roué,et al.  In-situ study of the cracking of metal hydride electrodes by acoustic emission technique , 2008 .

[12]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[13]  Jiang A fatigue criterion for general multiaxial loading , 2000 .

[14]  Claus Daniel,et al.  Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission , 2010 .

[15]  H. Inoue,et al.  Characterization of initial activation behavior for hydrogen storage alloys by acoustic emission technique , 2007 .

[16]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[17]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[18]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[19]  Fuqian Yang Interaction between diffusion and chemical stresses , 2005 .

[20]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[21]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[22]  Dusan Krajcinovic,et al.  Statistical aspects of the continuous damage theory , 1982 .

[23]  Y. Shao-horn,et al.  Structural fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells , 1999 .

[24]  Kyung Yoon Chung,et al.  Investigation of Structural Fatigue in Spinel Electrodes Using In Situ Laser Probe Beam Deflection Technique , 2002 .

[25]  Y. Pleskov,et al.  Lithium insertion into amorphous silicon thin-film electrodes , 2007 .

[26]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[27]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[28]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[29]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[30]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[31]  F. E. Little,et al.  Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes , 2001 .

[32]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[33]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[34]  C. Chu,et al.  Fatigue damage calculation using the critical plane approach , 1995 .

[35]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[36]  Glenn G. Amatucci,et al.  The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes , 2008 .

[37]  N. N. Nemeth,et al.  Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials , 2003 .

[38]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[39]  F. Hild,et al.  Uncoupled and coupled approaches to predict macrocrack initiation in fiber reinforced ceramic matrix composites , 1994 .