Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication

[1]  Chunhua Yan,et al.  Antibacterial mechanism and activity of cerium oxide nanoparticles , 2019, Science China Materials.

[2]  F. Huo,et al.  Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal , 2019, Nature Photonics.

[3]  Qiang Zhao,et al.  A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. , 2019, ACS applied materials & interfaces.

[4]  C. Tung,et al.  Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. , 2019, Journal of the American Chemical Society.

[5]  S. Reineke,et al.  Blue‐Light‐Absorbing Thin Films Showing Ultralong Room‐Temperature Phosphorescence , 2019, Advanced materials.

[6]  Wei Huang,et al.  Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. , 2019, The journal of physical chemistry letters.

[7]  Jia-rui Xu,et al.  Achieving Dual‐Emissive and Time‐Dependent Evolutive Organic Afterglow by Bridging Molecules with Weak Intermolecular Hydrogen Bonding , 2019, Advanced Optical Materials.

[8]  Runhui Liu,et al.  Alpha-beta chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant Staphylococcus aureus , 2018, Science China Materials.

[9]  Qi Wu,et al.  Reversible Ultralong Organic Phosphorescence for Visual and Selective Chloroform Detection. , 2018, ACS applied materials & interfaces.

[10]  H. Tian,et al.  Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission. , 2018, Angewandte Chemie.

[11]  Qi Wu,et al.  Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. , 2018, Journal of the American Chemical Society.

[12]  B. Tang,et al.  A facile strategy for realizing room temperature phosphorescence and single molecule white light emission , 2018, Nature Communications.

[13]  K. Yeung,et al.  Rapid Sterilization and Accelerated Wound Healing Using Zn2+ and Graphene Oxide Modified g‐C3N4 under Dual Light Irradiation , 2018 .

[14]  Z. Shuai,et al.  Dynamic Ultralong Organic Phosphorescence by Photoactivation. , 2018, Angewandte Chemie.

[15]  Qi Wu,et al.  Hydrogen-Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π-π Interactions. , 2018, Angewandte Chemie.

[16]  M. Sugimoto,et al.  Ultralong Room‐Temperature Phosphorescence from Amorphous Polymer Poly(Styrene Sulfonic Acid) in Air in the Dry Solid State , 2018 .

[17]  Bin Wang,et al.  The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens , 2018, Nature Communications.

[18]  David Tai Leong,et al.  Antimicrobial silver nanomaterials , 2018 .

[19]  Qi Wu,et al.  Enhancing Ultralong Organic Phosphorescence by Effective π‐Type Halogen Bonding , 2018 .

[20]  A. Zambom,et al.  Bacteriophages of the Urinary Microbiome , 2018, Journal of bacteriology.

[21]  Jayachandran N. Kizhakkedathu,et al.  Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo , 2018, Biomolecules.

[22]  Qi Wu,et al.  Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. , 2018, Angewandte Chemie.

[23]  Qi Wu,et al.  Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding , 2018 .

[24]  M. Ouellette,et al.  Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. , 2017, The Lancet. Infectious diseases.

[25]  S. Fortune,et al.  Beyond binding: antibody effector functions in infectious diseases , 2017, Nature Reviews Immunology.

[26]  Jesse V Jokerst,et al.  Molecular afterglow imaging with bright, biodegradable polymer nanoparticles , 2017, Nature Biotechnology.

[27]  Vasileios Fotopoulos,et al.  The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. , 2017, Water research.

[28]  Bin Liu,et al.  Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications. , 2017, Angewandte Chemie.

[29]  Wei Huang,et al.  Visible‐Light‐Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions , 2017, Advanced materials.

[30]  Chenjie Xu,et al.  Ultralong Phosphorescence of Water‐Soluble Organic Nanoparticles for In Vivo Afterglow Imaging , 2017, Advanced materials.

[31]  Mahdi Karimi,et al.  Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing , 2017, Advanced drug delivery reviews.

[32]  Siddharth Singh,et al.  Natural History of Adult Ulcerative Colitis in Population‐based Cohorts: A Systematic Review , 2017, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[33]  Fu-Gen Wu,et al.  Hydrogel-based phototherapy for fighting cancer and bacterial infection , 2017, Science China Materials.

[34]  D. Stalke,et al.  Chiral-at-Metal Phosphorescent Square-Planar Pt(II)-Complexes from an Achiral Organometallic Ligand. , 2017, Journal of the American Chemical Society.

[35]  J. Yao,et al.  Organic Phosphorescence Nanowire Lasers. , 2017, Journal of the American Chemical Society.

[36]  S. Hirata,et al.  White Afterglow Room‐Temperature Emission from an Isolated Single Aromatic Unit under Ambient Condition , 2017 .

[37]  Zhen Li,et al.  AIEgen with Fluorescence-Phosphorescence Dual Mechanoluminescence at Room Temperature. , 2017, Angewandte Chemie.

[38]  Z. Xia,et al.  Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. , 2017, Chemical Society reviews.

[39]  Yuanping Yi,et al.  Induction of Strong Long-Lived Room-Temperature Phosphorescence of N-Phenyl-2-naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. , 2016, Angewandte Chemie.

[40]  C. Fraser,et al.  Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging. , 2016, ACS sensors.

[41]  G. Qiao,et al.  Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers , 2016, Nature Microbiology.

[42]  H. Tian,et al.  Amorphous, Efficient, Room‐Temperature Phosphorescent Metal‐Free Polymers and Their Applications as Encryption Ink , 2016 .

[43]  D. Artis,et al.  Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis , 2016, Nature Immunology.

[44]  Yuan-chun Wu,et al.  Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room‐Temperature Phosphorescence , 2016, Angewandte Chemie.

[45]  Wei Huang,et al.  Stabilizing triplet excited states for ultralong organic phosphorescence. , 2015, Nature materials.

[46]  C. Tsilfidis,et al.  A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells , 2015, Skeletal Muscle.

[47]  Jinsang Kim,et al.  Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. , 2014, Angewandte Chemie.

[48]  Chihaya Adachi,et al.  Large reverse saturable absorption under weak continuous incoherent light. , 2014, Nature materials.

[49]  Xing Ma,et al.  Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy , 2014 .

[50]  Ingo Klimant,et al.  Ultra-sensitive optical oxygen sensors for characterisation of nearly anoxic systems , 2014, Nature Communications.

[51]  O. Blacque,et al.  Metal-free triplet phosphors with high emission efficiency and high tunability. , 2014, Angewandte Chemie.

[52]  Qiang Sun,et al.  Recent progress in metal-organic complexes for optoelectronic applications. , 2014, Chemical Society reviews.

[53]  Yanli Zhao,et al.  Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. , 2013, ACS applied materials & interfaces.

[54]  Kai Liu,et al.  Supramolecular photosensitizers with enhanced antibacterial efficiency. , 2013, Angewandte Chemie.

[55]  C. Adachi,et al.  Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions , 2013 .

[56]  Chunlei Zhu,et al.  Chemical molecule-induced light-activated system for anticancer and antifungal activities. , 2012, Journal of the American Chemical Society.

[57]  Kangwon Lee,et al.  Activating efficient phosphorescence from purely organic materials by crystal design. , 2011, Nature chemistry.

[58]  K. Y. Zhang,et al.  Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes , 2010 .

[59]  Peter R Ogilby,et al.  Singlet oxygen: there is indeed something new under the sun. , 2010, Chemical Society reviews.

[60]  B. Tang,et al.  Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature , 2010 .

[61]  M. Dewhirst,et al.  A dual-emissive-materials design concept enables tumour hypoxia imaging. , 2009, Nature materials.

[62]  G. O’Keefe,et al.  The risk factors and time course of sepsis and organ dysfunction after burn trauma. , 2003, The Journal of trauma.

[63]  R. Zbořil,et al.  Bacterial resistance to silver nanoparticles and how to overcome it , 2017, Nature Nanotechnology.

[64]  C. Adachi,et al.  Afterglow Organic Light‐Emitting Diode , 2016, Advanced materials.