Measurement, selection, and visualization of association rules: A compositional data perspective

[1]  V. Pawlowsky-Glahn,et al.  Modelling and Analysis of Compositional Data: Pawlowsky-Glahn/Modelling and Analysis of Compositional Data , 2015 .

[2]  B. Haldane THE ESTIMATION AND SIGNIFICANCE OF THE LOGARITHM OF A RATIO OF FREQUENCIES , 1956, Annals of human genetics.

[3]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[4]  V. Pawlowsky-Glahn,et al.  Compositional data: the sample space and its structure , 2019, TEST.

[5]  V. Pawlowsky-Glahn,et al.  Compositional data analysis : theory and applications , 2011 .

[6]  Lili Ma,et al.  A Framework for Infection Control Surveillance Using Association Rules , 2003, AMIA.

[7]  J. Martín-Fernández Comments on: Compositional data: the sample space and its structure , 2019, TEST.

[8]  Ferran Prados,et al.  Analysis of new diffusion tensor imaging anisotropy measures in the three‐phase plot , 2010, Journal of magnetic resonance imaging : JMRI.

[9]  Kurt Hornik,et al.  Introduction to arules – A computational environment for mining association rules and frequent item sets , 2009 .

[10]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[11]  Matthias Templ,et al.  Independence in Contingency Tables Using Simplicial Geometry , 2015 .

[12]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[13]  Jaideep Srivastava,et al.  Selecting the right objective measure for association analysis , 2004, Inf. Syst..

[14]  Michael Hahsler,et al.  arulesViz: Interactive Visualization of Association Rules with R , 2017, R J..

[15]  Ron S. Kenett On an Exploratory Analysis of Contingency Tables , 1983 .

[16]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[17]  Heikki Mannila,et al.  Discovery of Frequent Episodes in Event Sequences , 1997, Data Mining and Knowledge Discovery.

[18]  Christian H. Weiß Statistical mining of interesting association rules , 2008 .

[19]  Ron S. Kenett,et al.  Relative Linkage Disequilibrium Applications to Aircraft Accidents and Operational Risks , 2008, Trans. Mach. Learn. Data Min..

[20]  R. Lipton,et al.  Migraine prevalence, disease burden, and the need for preventive therapy , 2007, Neurology.

[21]  Aziz Guergachi,et al.  Applications of association rule mining in health informatics: a survey , 2017, Artificial Intelligence Review.

[22]  G. Mateu-Figueras,et al.  On the interpretation of differences between groups for compositional data , 2015 .

[23]  Javier Palarea-Albaladejo,et al.  zCompositions — R package for multivariate imputation of left-censored data under a compositional approach , 2015 .

[24]  V. Pawlowsky-Glahn,et al.  Groups of Parts and Their Balances in Compositional Data Analysis , 2005 .

[25]  Christian H. Weiβ Statistical mining of interesting association rules , 2008 .

[26]  K. Gerald van den Boogaart,et al.  Analyzing Compositional Data with R , 2013 .

[27]  Shian-Shyong Tseng,et al.  A novel manufacturing defect detection method using association rule mining techniques , 2005, Expert Syst. Appl..

[28]  Bernard Kamsu-Foguem,et al.  Mining association rules for the quality improvement of the production process , 2013, Expert Syst. Appl..

[29]  J. Aitchison,et al.  Logratio Analysis and Compositional Distance , 2000 .

[30]  Josep-Antoni Martín-Fernández,et al.  Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data , 2012, J. Classif..