On the strong maximum principle for fully nonlinear degenerate elliptic equations

Abstract. We prove a Strong Maximum Principle for semicontinuous viscosity subsolutions or supersolutions of fully nonlinear degenerate elliptic PDE's, which complements the results of [17]. Our assumptions and conclusions are different from those in [17], in particular our maximum principle implies the nonexistence of a dead core. We test the assumptions on several examples involving the p-Laplacian and the minimal surface operator, and they turn out to be sharp in all cases where the existence of a dead core is known. We can also cover equations that are singular for p = 0$ and very degenerate operators such as the $\infty $-Laplacian and some first order Hamilton-Jacobi operators.

[1]  Martino Bardi,et al.  Propagation of Maxima and Strong Maximum Principle for Viscosity Solutions of Degenerate Elliptic Equations , 2000 .

[2]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[3]  Bernd Kawohl,et al.  Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations , 1998 .

[4]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[5]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[6]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[7]  Jesús Ildefonso Díaz Díaz,et al.  Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  J. Serrin On the strong maximum principle for quasilinear second order differential inequalities , 1970 .

[9]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[10]  R. Jensen Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations , 1989 .

[11]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[12]  Jesús Ildefonso Díaz Díaz,et al.  Nonlinear Partial Differential Equations , 2012 .

[13]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[14]  M. Crandall,et al.  A semilinear equation in $L^1 (\mathbb {R}^N)$ , 1975 .

[15]  On the Strong Maximum Principle and the Large Time Behavior of Generalized Mean Curvature Flow with the Neumann Boundary Condition , 1999 .

[16]  Neil S. Trudinger,et al.  Comparison Principles and Pointwise Estimates for Viscosity Solutions of Nonlinear Elliptic Equations , 1988 .

[17]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[18]  G. Barles,et al.  Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non lipschitz nonlinearity , 1992 .

[19]  M. Miranda Un principio di Massimo Forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l'equazione delle superfici di area minima , 1971 .

[20]  Juan Luis Vázquez,et al.  A Strong Maximum Principle for some quasilinear elliptic equations , 1984 .

[21]  Y. Giga,et al.  On strong maximum principle and large time behaviour of generalized mean curvature flow with the Neumann boundary condition , 1997 .