The drag on a sphere in a power-law fluid

Abstract Using a finite-element program, the drag on an unbounded fluid in an (inelastic) power-law fluid is estimated. Comparison with upper and lower bounds, and with experimental data is given. Some remarks on wall effects are also made, and it is shown that wall effects are negligible forn ⩽ 0.5.

[1]  J. Michele Die Messung der ersten Normalspannungsdifferenz mit dem „Mechanischen Spektrometer“ — das Normalspannungsverhalten von linearen Polysiloxanen und Polyacrylamidlösungen , 1976 .

[2]  Bruce Caswell,et al.  The solution of viscous incompressible jet and free-surface flows using finite-element methods , 1974, Journal of Fluid Mechanics.

[3]  A. Acharya,et al.  Flow of inelastic and viscoelastic fluids past a sphere , 1976 .

[4]  L. G. Leal,et al.  A numerical study of the motion of a viscoelastic fluid past rigid spheres and spherical bubbles , 1982 .

[5]  H. Giesekus Die simultane Translations- und Rotationsbewegung einer Kugel in einer elastoviskosen Flüssigkeit , 1963 .

[6]  Madeleine Coutanceau,et al.  Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle , 1977 .

[7]  R. P. Chhabra,et al.  Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation , 1980 .

[8]  R. Lai Drag on a sphere accelerating rectilinearly in a maxwell fluid , 1974 .

[9]  R. Tanner,et al.  THE SLOW FLOW OF A VISCO-ELASTIC LIQUID PAST A SPHERE , 1961 .

[10]  B. Caswell,et al.  The creeping motion of a non-Newtonian fluid past a sphere , 1962, Journal of Fluid Mechanics.

[11]  N. Yoshioka,et al.  On non-Newtonian flow past a sphere , 1973 .

[12]  B. Mena,et al.  Slow flow of an elastico-viscous fluid past cylinders and spheres , 1974 .

[13]  John C. Slattery,et al.  Approximations to the drag force on a sphere moving slowly through either an Ostwald‐De Waele or a Sisko fluid , 1962 .

[14]  C. Tiu,et al.  Characterisation of inelastic power‐law fluids using falling sphere data , 1976 .

[15]  R. P. Chhabra,et al.  The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere , 1980 .

[16]  C. Tiu,et al.  A study of wall effects on the motion of a sphere in viscoelastic fluids , 1981 .

[17]  M. Denn,et al.  Slow viscoelastic flow past submerged objects , 1971 .

[18]  J. Hartnett,et al.  Drag coefficients of a slowly moving sphere in non-newtonian fluids , 1983 .

[19]  O. Hassager,et al.  A Lagrangian finite element method for the simulation of flow of non-newtonian liquids , 1983 .

[20]  B. Caswell The effect of finite boundaries on the motion of particles in non-Newtonian fluids , 1970 .

[21]  B. Caswell,et al.  Slow flow of an elastic- viscous fluid past an immersed body , 1974 .

[22]  M. L. Wasserman,et al.  Upper and lower bounds on the drag coefficient of a sphere in a power‐model fluid , 1964 .

[23]  R. Tanner Observations on the use of Oldroyd-type equations of state for viscoelastic liquids , 1964 .