Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates

Abstract The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes.

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[3]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[4]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[5]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[6]  Zhimin Zhang,et al.  Mathematical analysis of Zienkiewicz—Zhu's derivative patch recovery technique , 1996 .

[7]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[8]  I. Babuška,et al.  Corrigendum: “Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems” [Math. Comp. 52 (1989), no. 186, 275–297; MR0962210 (89k:65132)] , 1994 .

[9]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  George Goodsell,et al.  Pointwise superconvergence of the gradient for the linear tetrahedral element , 1994 .

[12]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[13]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[14]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[15]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[16]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[17]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..

[18]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[19]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[20]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[21]  Zhimin Zhang A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..

[22]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[23]  I. Babuska,et al.  Regularity and numerical solution of eigenvalue problems with piecewise analytic data , 1989 .

[24]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[25]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[26]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[27]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[28]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[29]  Zhimin Zhang,et al.  Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .

[30]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[31]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..