Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates
暂无分享,去创建一个
Aihui Zhou | Dong Mao | Lihua Shen | Aihui Zhou | Lihua Shen | D. Mao | L. Shen
[1] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[2] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[3] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[4] Rolf Stenberg,et al. Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .
[5] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[6] Zhimin Zhang,et al. Mathematical analysis of Zienkiewicz—Zhu's derivative patch recovery technique , 1996 .
[7] Mary F. Wheeler,et al. Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .
[8] I. Babuška,et al. Corrigendum: “Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems” [Math. Comp. 52 (1989), no. 186, 275–297; MR0962210 (89k:65132)] , 1994 .
[9] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[10] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[11] George Goodsell,et al. Pointwise superconvergence of the gradient for the linear tetrahedral element , 1994 .
[12] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[13] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[14] J. Bramble,et al. Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .
[15] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[16] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..
[17] Jinchao Xu,et al. Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Nonlinear Problems , 2001, Adv. Comput. Math..
[18] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[19] Bo Li,et al. Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .
[20] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[21] Zhimin Zhang. A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..
[22] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[23] I. Babuska,et al. Regularity and numerical solution of eigenvalue problems with piecewise analytic data , 1989 .
[24] Ningning Yan,et al. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .
[25] Jinchao Xu,et al. Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..
[26] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[27] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[28] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[29] Zhimin Zhang,et al. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .
[30] Zhiming Chen,et al. On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..
[31] Carsten Carstensen,et al. An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..