Adaptation for parallel memetic algorithm based on population entropy

In this paper, we propose the island model parallel memetic algorithm with diversity-based dynamic adaptive strategy (PMA-DLS) for controlling the local search frequency and demonstrate its utility in solving complex combinatorial optimization problems, in particular large-scale quadratic assignment problems (QAPs). The empirical results show that PMA-DLS converges to competitive solutions at significantly lower computational cost when compared to the canonical MA and PMA. Furthermore, compared to our previous work on PMA using static adaptation strategy, it is found that the diversity-based dynamic adaptation strategy displays better robustness in terms of solution quality across the class of QAP problems considered without requiring extra effort in selecting suitable parameters.

[1]  Meng Joo Er,et al.  Solving large scale combinatorial optimization using PMA-SLS , 2005, GECCO '05.

[2]  Bu-Sung Lee,et al.  Grid Enabled Optimization , 2005, EGC.

[3]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[4]  Pablo Moscato,et al.  Applying Memetic Algorithms to the Analysis of Microarray Data , 2003, EvoWorkshops.

[5]  Bu-Sung Lee,et al.  A Multi-cluster Grid Enabled Evolution Framework for Aerodynamic Airfoil Design Optimization , 2005, ICNC.

[6]  Tang Jing,et al.  A parallel hybrid GA for combinatorial optimization using grid technology , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[7]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[8]  Yu Yuan,et al.  Extensive Testing of a Hybrid Genetic Algorithm for Solving Quadratic Assignment Problems , 2002, Comput. Optim. Appl..

[9]  Wan-Chi Siu,et al.  A study of the Lamarckian evolution of recurrent neural networks , 2000, IEEE Trans. Evol. Comput..

[10]  B. Freisleben,et al.  A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[12]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Sigeru Omatu,et al.  Efficient Genetic Algorithms Using Simple Genes Exchange Local Search Policy for the Quadratic Assignment Problem , 2000, Comput. Optim. Appl..

[14]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[15]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[16]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[17]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[18]  Richard Bradwell,et al.  Parallel asynchronous memetic algorithms , 1999 .

[19]  Konstantinos G. Margaritis,et al.  Performance comparison of memetic algorithms , 2004, Appl. Math. Comput..

[20]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[21]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[22]  A. Dickson On Evolution , 1884, Science.

[23]  W. Hart Adaptive global optimization with local search , 1994 .

[24]  R. Belew,et al.  Evolutionary algorithms with local search for combinatorial optimization , 1998 .

[25]  Meng Joo Er,et al.  Study of migration topology in island model parallel hybrid-GA for large scale quadratic assignment problems , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..