Photonic simulation of entanglement growth and engineering after a spin chain quench

The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.The complete maximisation of the entanglement between two complementary blocks of spins due to the dynamics of spin chains remains to be observed. Here, Pitsios et al. simulate such dynamics by propagating single photons in an integrated photonic circuit.

[1]  Frederick W. Strauch,et al.  Connecting the discrete- and continuous-time quantum walks , 2006 .

[2]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[3]  D. Jaksch,et al.  Multipartite entanglement detection in bosons. , 2004, Physical review letters.

[4]  Z. A. Ibrahim,et al.  Measurement of D+ and Λc+ production in deep inelastic scattering at HERA , 2010, 1007.1945.

[5]  J. Cardy,et al.  Quantum quenches in 1  +  1 dimensional conformal field theories , 2016, 1603.02889.

[6]  S. J. Suh,et al.  Entanglement tsunami: universal scaling in holographic thermalization. , 2013, Physical review letters.

[7]  T. Takayanagi,et al.  Measuring black hole formations by entanglement entropy via coarse-graining , 2010, 1008.3439.

[8]  E. Demler,et al.  Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. , 2008, Physical review letters.

[9]  Mark G. Thompson,et al.  Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions , 2011 .

[10]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[11]  Fabio Sciarrino,et al.  Particle statistics affects quantum decay and Fano interference. , 2015, Physical review letters.

[12]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[13]  L. G. Helt,et al.  Tunable quantum interference in a 3D integrated circuit , 2014, Scientific Reports.

[14]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[15]  G. M. Nikolopoulos,et al.  Faithful communication Hamiltonian in photonic lattices. , 2012, Optics letters.

[16]  G. Santoro,et al.  Entanglement entropy in a periodically driven Ising chain , 2016, 1603.03663.

[17]  Immanuel Bloch,et al.  Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain. , 2015, Physical review letters.

[18]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[19]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[20]  Alexander L. Gaeta,et al.  Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing , 2013 .

[21]  Philip Walther,et al.  Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems , 2014, Scientific Reports.

[22]  Yannick Ole Lipp,et al.  Linear-optical generation of eigenstates of the two-site XY model , 2014, 1410.1099.

[23]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[24]  A. Politi,et al.  Observing fermionic statistics with photons in arbitrary processes , 2013, Scientific Reports.

[25]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[26]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[27]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[28]  Ehud Altman,et al.  Universal dynamics and renormalization in many body localized systems , 2014, 1408.2834.

[29]  L. Banchi,et al.  Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems , 2010, 1006.1217.

[30]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[31]  Abolfazl Bayat,et al.  Nonperturbative entangling gates between distant qubits using uniform cold atom chains. , 2010, Physical review letters.

[32]  Marco Barbieri,et al.  Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring , 2014, Scientific Reports.

[33]  Joel E Moore,et al.  Unbounded growth of entanglement in models of many-body localization. , 2012, Physical review letters.

[34]  Roberto Morandotti,et al.  Quantum and classical correlations in waveguide lattices. , 2008, Physical review letters.

[35]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[36]  Paola Verrucchi,et al.  Long quantum channels for high-quality entanglement transfer , 2011, 1105.6058.

[37]  Hyungwon Kim,et al.  Ballistic spreading of entanglement in a diffusive nonintegrable system. , 2013, Physical review letters.

[38]  M. Kim,et al.  Nested entangled states for distributed quantum channels , 2007, 0708.0557.

[39]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[40]  S. Bose,et al.  Optimal Quench for Distance-Independent Entanglement and Maximal Block Entropy , 2014, 1404.3634.

[41]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[42]  R. Fazio,et al.  Entanglement entropy dynamics of Heisenberg chains , 2005, cond-mat/0512586.

[43]  P. Calabrese,et al.  Evolution of entanglement entropy following a quantum quench : Analytic results for the XY chain in a transverse magnetic field , 2008, 0804.3559.

[44]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[45]  Marco Barbieri,et al.  Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring , 2013, Scientific Reports.

[46]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[47]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[48]  J. O'Brien,et al.  Super-stable tomography of any linear optical device , 2012, 1208.2868.

[49]  Javier Rodr'iguez-Laguna,et al.  Entanglement over the rainbow , 2015, 1503.02695.

[50]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[51]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[52]  Pawel Kurzynski,et al.  Discrete-time quantum walk approach to state transfer , 2011, 1103.4185.

[53]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[54]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[55]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[56]  Fabio Sciarrino,et al.  Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining , 2015, Light: Science & Applications.

[57]  Fabio Sciarrino,et al.  Teleportation of a vacuum--one-photon qubit. , 2002, Physical review letters.

[58]  S. Bose,et al.  Exploiting Quench Dynamics in Spin Chains for Distant Entanglement and Quantum Communication , 2008, 0806.4568.

[59]  R. Feynman Simulating physics with computers , 1999 .

[60]  Dmitry A. Abanin,et al.  Entanglement dynamics in quantum many-body systems , 2015, 1508.03784.

[61]  A V Gorshkov,et al.  Robust quantum state transfer in random unpolarized spin chains. , 2010, Physical review letters.

[62]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[63]  P. Zoller,et al.  Measuring entanglement growth in quench dynamics of bosons in an optical lattice. , 2012, Physical review letters.