Mathematical Biology

[1]  J. Sethian,et al.  Implementation of the level set method for continuum mechanics based tumor growth models , 2005 .

[2]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[3]  V. Cristini,et al.  Nonlinear simulation of tumor growth , 2003, Journal of mathematical biology.

[4]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[5]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[6]  P. van Damme,et al.  Mutant hepatitis B viruses: a matter of academic interest only or a problem with far-reaching implications? , 2001, Vaccine.

[7]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[8]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[9]  Tana,et al.  Relationship between Susceptibility to Hemolytic-Uremic Syndrome and Levels of Globotriaosylceramide in Human Sera , 2001, Journal of Clinical Microbiology.

[10]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[11]  J. Hyman,et al.  An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. , 2000, Mathematical biosciences.

[12]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[13]  D Greenhalgh,et al.  Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. , 2000, Mathematical biosciences.

[14]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[15]  L. Preziosi,et al.  ADVECTION-DIFFUSION MODELS FOR SOLID TUMOUR EVOLUTION IN VIVO AND RELATED FREE BOUNDARY PROBLEM , 2000 .

[16]  Dantzig,et al.  Computation of dendritic microstructures using a level set method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  J. Martín,et al.  HLA haplotypes are associated with differential susceptibility to Trypanosoma cruzi infection. , 2000, Tissue antigens.

[18]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[19]  Jia Li,et al.  The Diierential Infectivity and Staged Progression Models for the Transmission of Hiv , 1998 .

[20]  H. Agiza,et al.  On modeling epidemics. Including latency, incubation and variable susceptibility , 1998 .

[21]  J. Blangero,et al.  Genetic epidemiology of seropositivity for Trypanosoma cruzi infection in rural Goias, Brazil. , 1997, The American journal of tropical medicine and hygiene.

[22]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[23]  Stanley Osher,et al.  A Hybrid Method for Moving Interface Problems with Application to the Hele-Shaw Flow , 1997 .

[24]  M. Chaplain,et al.  Modelling the role of cell-cell adhesion in the growth and development of carcinomas , 1996 .

[25]  S. Duncan,et al.  Whooping cough epidemics in London, 1701-1812: infecdon dynamics, seasonal forcing and the effects of malnutrition , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Wei Shyy,et al.  Computational Fluid Dynamics with Moving Boundaries , 1995 .

[28]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[29]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[30]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  H. Sheld,et al.  Primary Care Update for Ob/Gyns , 1995 .

[32]  S. Duncan,et al.  Modelling the different smallpox epidemics in England. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[34]  Carlos Castillo-Chavez,et al.  Asymptotically Autonomous Epidemic Models , 1994 .

[35]  Carlos Castillo-Chavez,et al.  How May Infection-Age-Dependent Infectivity Affect the Dynamics of HIV/AIDS? , 1993, SIAM J. Appl. Math..

[36]  J. Heesterbeek,et al.  The basic reproduction ratio for sexually transmitted diseases. Part 2. Effects of variable HIV infectivity. , 1993, Mathematical biosciences.

[37]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[38]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[39]  B. Bolker,et al.  Chaos and biological complexity in measles dynamics , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Alan A. Berryman,et al.  The Orgins and Evolution of Predator‐Prey Theory , 1992 .

[41]  A. Gutierrez Physiological Basis of Ratio-Dependent Predator-Prey Theory: The Metabolic Pool Model as a Paradigm , 1992 .

[42]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[43]  Roy M. Anderson,et al.  Transmission dynamics of HIV infection , 1987, Nature.

[44]  J. Sethian Curvature and the evolution of fronts , 1985 .

[45]  J. Folkman The vascularization of tumors. , 1976, Scientific American.

[46]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[48]  Thomas S. Deisboeck,et al.  Simulating ‘structure–function’ patterns of malignant brain tumors , 2004 .

[49]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[50]  K. Ikuta,et al.  Differential susceptibility of resting CD4(+) T lymphocytes to a T-tropic and a macrophage (M)-tropic human immunodeficiency virus type 1 is associated with their surface expression of CD38 molecules. , 2001, Virus research.

[51]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[52]  John A. Adam,et al.  General Aspects of Modeling Tumor Growth and Immune Response , 1997 .

[53]  James A. Sethian,et al.  Numerical Methods for Propagating Fronts , 1987 .

[54]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[55]  Vasilios Alexiades,et al.  OVERCOMING THE STABILITY RESTRICTION OF EXPLICIT SCHEMES VIA SUPER-TIME-STEPPING , 2022 .