On Coalgebras with Internal Moves

In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.

[1]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[2]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[3]  A. Kock Strong functors and monoidal monads , 1972 .

[4]  Zoltán Ésik,et al.  Iteration Theories , 1993, EATCS Monographs on Theoretical Computer Science.

[5]  R. V. Glabbeek The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves , 1993 .

[6]  Gordon D. Plotkin,et al.  Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[7]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[8]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[9]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[10]  Alexandra Silva,et al.  A Coalgebraic View of ε-Transitions , 2013, CALCO.

[11]  Tomasz Brengos Weak Bisimulations for Coalgebras over Ordered Functors , 2012, IFIP TCS.

[12]  Jan Rothe A Syntactical Approach to Weak (Bi-)Simulation for Coalgebras , 2002, CMCS.

[13]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[14]  Ichiro Hasuo,et al.  Generic Forward and Backward Simulations , 2006, CONCUR.

[15]  Philip S. Mulry,et al.  MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND RECURSIVE DISTRIBUTIVE LAWS , 2007 .

[16]  Nick Benton,et al.  Traced Premonoidal Categories , 2003, RAIRO Theor. Informatics Appl..

[17]  Tarmo Uustalu,et al.  Coproducts of Ideal Monads , 2004, RAIRO Theor. Informatics Appl..

[18]  M. Barr Coequalizers and free triples , 1970 .

[19]  Alexandra Silva,et al.  A coalgebraic view of epsilon-transitions , 2013 .

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Bart Jacobs,et al.  From Coalgebraic to Monoidal Traces , 2010, CMCS@ETAPS.

[22]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[23]  E. Manes Algebraic Theories in a Category , 1976 .

[24]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[25]  D. Sangiorgi Introduction to Bisimulation and Coinduction , 2011 .

[26]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[27]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[28]  Joseph A. Ziegler,et al.  On the space cost curve and industrial location: Comment , 1985 .

[29]  Alexandra Silva,et al.  Trace semantics via determinization , 2015, J. Comput. Syst. Sci..

[30]  Masahito Hasegawa,et al.  Models of Sharing Graphs , 1999, Distinguished Dissertations.

[31]  Bart Jacobs,et al.  Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems , 2008, CMCS.

[32]  Sergey Goncharov Kleene monads , 2010 .

[33]  Erik P. de Vink,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 2009, Sci. Ann. Comput. Sci..

[34]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[35]  Dragan Masulovic,et al.  Towards Weak Bisimulation For Coalgebras , 2002, Electron. Notes Theor. Comput. Sci..

[36]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[37]  Masahito Hasegawa,et al.  Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[38]  Ross Street,et al.  Traced monoidal categories , 1996 .

[39]  Marino Miculan,et al.  Weak bisimulations for labelled transition systems weighted over semirings , 2013, ArXiv.

[40]  Alexandra Silva,et al.  Generalizing the powerset construction, coalgebraically , 2010, FSTTCS.

[41]  Stefan Milius On Iteratable Endofunctors , 2002, CTCS.

[42]  Ugo Montanari,et al.  Dynamic congruence vs. progressing bisimulation for CCS , 1992, Fundam. Informaticae.

[43]  Jan J. M. M. Rutten,et al.  A note on coinduction and weak bisimilarity for while programs , 1998, RAIRO Theor. Informatics Appl..

[44]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[45]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.